The root of angiosperm phylogeny inferred from duplicate phytochrome genes.

An analysis of duplicate phytochrome genes (PHYA and PHYC) is used to root the angiosperms, thereby avoiding the inclusion of highly diverged outgroup sequences. The results unambiguously place the root near Amborella (one species, New Caledonia) and resolve water lilies (Nymphaeales, approximately 70 species, cosmopolitan), followed by Austrobaileya (one species, Australia), as early branches. These findings bear directly on the interpretation of morphological evolution and diversification within angiosperms.

[1]  Andrew G. Stephenson,et al.  Experimental and Molecular Approaches to Plant Biosystematics , 1997 .

[2]  Gynoecium diversity and systematics of the Laurales , 1997 .

[3]  G. Howe,et al.  Evidence that the phytochrome gene family in black cottonwood has one PHYA locus and two PHYB loci but lacks members of the PHYC/F and PHYE subfamilies. , 1998, Molecular biology and evolution.

[4]  H. Whitehouse Multiple-allelomorph incompatibility of pollen and style in the evolution of the angiosperms. , 1950 .

[5]  P. K. Endress,et al.  Gynoecium diversity and systematics of the paleoherbs , 1998 .

[6]  Carol J. Bult,et al.  Constructing a Significance Test for Incongruence , 1995 .

[7]  A. Cox,et al.  Gene sequences, collaboration and analysis of large data sets , 1998 .

[8]  S. Carlquist Ecological strategies of xylem evolution , 1975 .

[9]  W. John Kress,et al.  Angiosperm Phylogeny Inferred from 18S Ribosomal DNA Sequences , 1997 .

[10]  M. Donoghue,et al.  Evolution of alcohol dehydrogenase genes in peonies (Paeonia): phylogenetic relationships of putative nonhybrid species. , 1997, Molecular biology and evolution.

[11]  S. Mathews,et al.  Phytochrome gene diversity , 1997 .

[12]  M. Donoghue,et al.  Phylogenies and angiosperm diversification , 1993, Paleobiology.

[13]  M. Chase,et al.  A COMBINED CLADISTIC ANALYSIS OF ANGIOSPERMS USING RBCL AND NON-MOLECULAR DATA SETS , 1998 .

[14]  W. Doolittle,et al.  Tempo, mode, the progenote, and the universal root. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  P. Holland,et al.  Evolution of 28S Ribosomal DNA in Chaetognaths: Duplicate Genes and Molecular Phylogeny , 1997, Journal of Molecular Evolution.

[16]  S. Mathews,et al.  Evolution of the Phytochrome Gene Family and Its Utility for Phylogenetic Analyses of Angiosperms , 1995 .

[17]  P. K. Endress,et al.  Regular ArticleGynoecium diversity and systematics of the Magnoliales and winteroids , 1997 .

[18]  S. B. Hoot,et al.  Phylogeny of Basal Eudicots Based on Three Molecular Data Sets: atpB, rbcL, and 18s Nuclear Ribosomal DNA Sequences , 1999 .

[19]  S. Mathews,et al.  Monophyletic subgroups of the tribe Millettieae (Leguminosae) as revealed by phytochrome nucleotide sequence data , 1998 .

[20]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[21]  Herbert Woodrow A review , 1939 .

[22]  S. Carlquist PIT MEMBRANE REMNANTS IN PERFORATION PLATES OF PRIMITIVE DICOTYLEDONS AND THEIR SIGNIFICANCE , 1992 .

[23]  E. Schneider,et al.  Vessels in Brasenia (Cabombaceae): New perspectives on vessel origin in primary XYLEM OF ANGIOSPERMS , 1996 .

[24]  M. Donoghue,et al.  Shifts in Diversification Rate with the Origin of Angiosperms , 1994, Science.

[25]  P. K. Endress,et al.  Gynoecium diversity and systematics of the Magnoliales and winteroids , 1997 .

[26]  Junhyong Kim,et al.  GENERAL INCONSISTENCY CONDITIONS FOR MAXIMUM PARSIMONY: EFFECTS OF BRANCH LENGTHS AND INCREASING NUMBERS OF TAXA , 1996 .

[27]  J. Hughes,et al.  Non‐angiosperm phytochromes and the evolution of vascular plants , 1998 .

[28]  D. Young Are the angiosperms primitively vesselless , 1981 .

[29]  M. Donoghue,et al.  PHYLOGENIES AND THE ANALYSIS OF EVOLUTIONARY SEQUENCES, WITH EXAMPLES FROM SEED PLANTS , 1989, Evolution; international journal of organic evolution.

[30]  M. Donoghue,et al.  Duplicate genes and the root of angiosperms, with an example using phytochrome sequences. , 1998, Molecular phylogenetics and evolution.

[31]  M. Donoghue,et al.  Stomatal plugs of Drimys winteri (Winteraceae) protect leaves from mist but not drought. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  K. Roux,et al.  High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. , 1996, BioTechniques.

[33]  W. Martin,et al.  Gnetum and the Angiosperms: Molecular Evidence that Their Shared Morphological Characters Are Convergent, Rather than Homologous , 1999 .

[34]  J. Doyle Seed Plant Phylogeny and the Relationships of Gnetales , 1996, International Journal of Plant Sciences.

[35]  S. Renner,et al.  Circumscription and phylogeny of the Laurales: evidence from molecular and morphological data. , 1999, American journal of botany.

[36]  E. Schneider,et al.  Vessels in Brasenia (Cabombaceae): New perspective on vessel origin in primary perspectives on vessel origin in primary xylem of angiosperms , 1996 .

[37]  Masasuke Yoshida,et al.  Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. Osawa,et al.  Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Carmell,et al.  Posttranscriptional Gene Silencing in Plants , 2006 .