Approximation at First and Second Order of $m$-order Integrals of the Fractional Brownian Motion and of Certain Semimartingales
暂无分享,去创建一个
[1] M. Zähle. Integration with respect to fractal functions and stochastic calculus. I , 1998 .
[2] Stochastic differential equations for fractional Brownian motions , 2000 .
[3] Kiyosi Itô. Multiple Wiener Integral , 1951 .
[4] P. Vallois,et al. Ito formula forC1-functions of semimartingales , 1996 .
[5] L. Rogers. Arbitrage with Fractional Brownian Motion , 1997 .
[6] M. Taqqu. Convergence of integrated processes of arbitrary Hermite rank , 1979 .
[7] Hans Föllmer,et al. Calcul d'ito sans probabilites , 1981 .
[8] J. Mémin,et al. Convergence en loi des suites d'intégrales stochastiques sur l'espace $$\mathbb{D}$$ 1 de Skorokhod , 1989 .
[9] Gabriel Lang,et al. Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .
[10] M. Taqqu. Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence , 1977 .
[11] X. Guyon,et al. Convergence en loi des H-variations d'un processus gaussien stationnaire sur R , 1989 .
[12] O. Mazet,et al. Stochastic calculus with respect to fractional Brownian motion , 2006 .
[13] P. Vallois,et al. Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H>=1/4 , 2003 .
[14] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[15] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[16] Liudas Giraitis,et al. CLT and other limit theorems for functionals of Gaussian processes , 1985 .