Approximation at First and Second Order of $m$-order Integrals of the Fractional Brownian Motion and of Certain Semimartingales

Let $X$ be the fractional Brownian motion of any Hurst index $H\in (0,1)$ (resp. a semimartingale) and set $\alpha=H$ (resp. $\alpha=\frac{1}{2}$). If $Y$ is a continuous process and if $m$ is a positive integer, we study the existence of the limit, as $\varepsilon\rightarrow 0$, of the approximations $$ I_{\varepsilon}(Y,X) :=\left\{\int_{0}^{t}Y_{s}\left(\frac{X_{s+\varepsilon}-X_{s}}{\varepsilon^{\alpha}}\right)^{m}ds,\,t\geq 0\right\} $$ of $m$-order integral of $Y$ with respect to $X$. For these two choices of $X$, we prove that the limits are almost sure, uniformly on each compact interval, and are in terms of the $m$-th moment of the Gaussian standard random variable. In particular, if $m$ is an odd integer, the limit equals to zero. In this case, the convergence in distribution, as $\varepsilon\rightarrow 0$, of $\varepsilon^{-\frac{1}{2}} I_{\varepsilon}(1,X)$ is studied. We prove that the limit is a Brownian motion when $X$ is the fractional Brownian motion of index $H\in (0,\frac{1}{2}]$, and it is in term of a two dimensional standard Brownian motion when $X$ is a semimartingale.

[1]  M. Zähle Integration with respect to fractal functions and stochastic calculus. I , 1998 .

[2]  Stochastic differential equations for fractional Brownian motions , 2000 .

[3]  Kiyosi Itô Multiple Wiener Integral , 1951 .

[4]  P. Vallois,et al.  Ito formula forC1-functions of semimartingales , 1996 .

[5]  L. Rogers Arbitrage with Fractional Brownian Motion , 1997 .

[6]  M. Taqqu Convergence of integrated processes of arbitrary Hermite rank , 1979 .

[7]  Hans Föllmer,et al.  Calcul d'ito sans probabilites , 1981 .

[8]  J. Mémin,et al.  Convergence en loi des suites d'intégrales stochastiques sur l'espace $$\mathbb{D}$$ 1 de Skorokhod , 1989 .

[9]  Gabriel Lang,et al.  Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .

[10]  M. Taqqu Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence , 1977 .

[11]  X. Guyon,et al.  Convergence en loi des H-variations d'un processus gaussien stationnaire sur R , 1989 .

[12]  O. Mazet,et al.  Stochastic calculus with respect to fractional Brownian motion , 2006 .

[13]  P. Vallois,et al.  Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H>=1/4 , 2003 .

[14]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[15]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[16]  Liudas Giraitis,et al.  CLT and other limit theorems for functionals of Gaussian processes , 1985 .