A stopping rule for structure-preserving variable selection
暂无分享,去创建一个
[1] Wojtek J. Krzanowski. Attribute Selection in Correspondence Analysis of Incidence Matrices , 1993 .
[2] Ian T. Jolliffe,et al. Discarding Variables in a Principal Component Analysis. I: Artificial Data , 1972 .
[3] R. Sibson. Studies in the Robustness of Multidimensional Scaling: Procrustes Statistics , 1978 .
[4] S. Wold. Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models , 1978 .
[5] W. Krzanowski,et al. Cross-Validatory Choice of the Number of Components From a Principal Component Analysis , 1982 .
[6] B. Manly. Multivariate Statistical Methods : A Primer , 1986 .
[7] J. N. R. Jeffers,et al. Two Case Studies in the Application of Principal Component Analysis , 1967 .
[8] Wojtek J. Krzanowski,et al. A COMPARISON OF VARIABLE REDUCTION TECHNIQUES IN AN ATTITUDINAL INVESTIGATION OF MEAT PRODUCTS , 1988 .
[9] W. Krzanowski. Selection of Variables to Preserve Multivariate Data Structure, Using Principal Components , 1987 .
[10] R. Sibson. Studies in the Robustness of Multidimensional Scaling: Perturbational Analysis of Classical Scaling , 1979 .
[11] John C. Gower,et al. Statistical methods of comparing different multivariate analyses of the same data , 1971 .
[12] Wojtek J. Krzanowski,et al. Cross-Validation in Principal Component Analysis , 1987 .
[13] A. J. Collins,et al. Perturbation Theory for Generalized Procrustes Analysis , 1985 .