An Algorithm for Forest Stem Volume Retrieval Under the Condition of Limited Auxiliary Information

This paper presents an algorithm for retrieving the stem volume of forest stands on relatively flat ground. A forest backscatter model at the individual tree level is used to derive the algorithm. This model treats the trunk volumes as random quantities and employs a concept of random forest reflection coefficient. The algorithm is derived under the assumption that the only information on areal tree density and mean value of the forest reflection coefficient is available. Performance of the algorithm is investigated by means of Monte-Carlo simulation for different scenarios in terms of statistical distributions for the trunk volume and forest reflection coefficient. The results of simulation have shown that the algorithm exhibits robustness to the distributions and provides accurate stem volume estimation over a relatively wide range of the unknown variances of the distributions.

[1]  T. T. Soong,et al.  The joint estimation of signal and noise from the sum envelope , 1967, IEEE Trans. Inf. Theory.

[2]  Thuy Le Toan,et al.  On the retrieving of forest stem volume from VHF SAR data: observation and modeling , 2001, IEEE Trans. Geosci. Remote. Sens..

[3]  Lars M. H. Ulander,et al.  Individual tree detection using CARABAS-II , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[4]  Richard H. Waring,et al.  Forest Ecosystems: Analysis at Multiple Scales , 1985 .

[5]  Mikko Inkinen,et al.  A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  Minyi Guo,et al.  Molecular solutions for the subset-sum problem on DNA-based supercomputing. , 2004, Bio Systems.

[7]  G. Bonan,et al.  Effects of boreal forest vegetation on global climate , 1992, Nature.

[8]  Clifford R. Johnson,et al.  Solution of a 20-Variable 3-SAT Problem on a DNA Computer , 2002, Science.

[9]  Lars M. H. Ulander,et al.  Measurements on individual trees using multiple VHF SAR images , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Min-Ho Ka,et al.  Model-Associated Forest Parameter Retrieval Using VHF SAR Data at the Individual Tree Level , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Lars M. H. Ulander,et al.  A model relating VHF-band backscatter to stem volume of coniferous boreal forest , 2000, IEEE Trans. Geosci. Remote. Sens..

[12]  Lars M. H. Ulander,et al.  Estimation of forest parameters using CARABAS-II VHF SAR data , 2000, IEEE Trans. Geosci. Remote. Sens..

[13]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[14]  Lars M. H. Ulander,et al.  Forest stem volume estimation using high-resolution lidar and SAR data , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[15]  John G. Proakis,et al.  Digital Communications , 1983 .

[16]  P D Kaplan,et al.  DNA solution of the maximal clique problem. , 1997, Science.

[17]  Weng-Long Chang,et al.  Fast parallel molecular algorithms for DNA-based computation: factoring integers , 2005, IEEE Transactions on NanoBioscience.

[18]  Minyi Guo,et al.  Towards solution of the set-splitting problem on gel-based DNA computing , 2004, Future Gener. Comput. Syst..

[19]  T. T. Soong,et al.  Fundamentals of Probability and Statistics for Engineers , 2004 .

[20]  S. Leigh,et al.  Probability and Random Processes for Electrical Engineering , 1989 .

[21]  Edward B. Rastetter,et al.  Forest Ecosystems, Analysis at Multiple Scales, 2nd Edition , 1999 .