This paper describes a theoretical model for analysing the dynamic characteristics of wedge-shaped underplatform dampers for turbine blades, with the objective that this model can be used to minimise the need for conducting expensive experiments for optimising such dampers. The theoretical model presented in the paper has several distinct features to achieve this objective including: (i) it makes use of experimentally-measured contact characteristics (hysteresis loops) for description of the basic contact behaviour of a given material combination with representative surface finish, (ii) the damper motion between the blade platform locations is determined according to the motion of the platforms, (iii) three-dimensional damper motion is included in the model, and (iv) normal load variation across the contact surfaces during vibration is included, thereby accommodating contact opening and closing during vibration.A dedicated non-linear vibration analysis program has been developed for this study and predictions have been verified against experimental data obtained from two test rigs. Two cantilever beams were used to simulate turbine blades with real underplatform dampers in the first experiment. The second experiment comprised real turbine blades with real underplatform damper. Correlation of the predictions and the experimental results revealed that the analysis can predict (i) the optimum damping condition, (ii) the amount of response reduction and (iii) the natural frequency shift caused by friction dampers, all with acceptable accuracy. It has also been shown that the most commonly-used underplatform dampers in practice are prone to rolling motion, an effect which reduces the damping in certain modes of vibration usually described as the lower nodal diameter bladed-disc modes.© 1999 ASME
[1]
B. Kuran,et al.
Forced harmonic response analysis of nonlinear structures using describing functions
,
1993
.
[2]
Jerry H. Griffin,et al.
A Review of Friction Damping of Turbine Blade Vibration
,
1990
.
[3]
Wieslaw Ostachowicz.
The harmonic balance method for determining the vibration parameters in damped dynamic systems
,
1989
.
[4]
Gabor Csaba,et al.
Modelling of a Microslip Friction Damper Subjected to Translation and Rotation
,
1999
.
[5]
Chia-Hsiang Menq,et al.
A Comparison of Transient and Steady State Finite Element Analyses of the Forced Response of a Frictionally Damped Beam
,
1985
.
[6]
Chia-Hsiang Menq,et al.
The influence of microslip on vibratory response, Part II: A comparison with experimental results
,
1986
.
[7]
William W. Hager,et al.
Updating the Inverse of a Matrix
,
1989,
SIAM Rev..
[8]
A. Cowley,et al.
An Elastic Mechanism for the Micro-Sliding Characteristics between Contacting Machined Surfaces
,
1978
.
[9]
Pascal Drazetic,et al.
On a direct inversion of the impedance matrix in response reanalysis
,
1996
.
[10]
M. Hajek,et al.
Stick-slip motion of turbine blade dampers
,
1992,
Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.