Cell viability test after laser guidance

To precisely control the position of multiple types of cells in a coculture for the study of cell-cell interactions, we have developed a laser micropatterning technique. The technique employs the optical forces generated by a weakly focused laser beam. In the beam's focal region, the optical force draws microparticles, such as cells, into the center of the beam, propels them along the beam axis, and guides them onto a target surface. Specific patterns are created through computercontrolled micromanipulation of the substrate relative to the laser beam. Preliminary data have demonstrated cell viability after laser guidance. This project was designed to systematically vary the controllable laser parameters, namely, intensity and exposure time of the laser on single cells, and thus determine the laser parameters that allow negligible cell damage with functional cellular position control. To accomplish this goal, embryonic day 7 (E7) chick forebrain neurons were cultured in 35 mm petri dishes. Control and test cells were selected one hour after cell placement to allow cell attachment. Test cells were subjected to the laser at the focal region. The experimental parameters were chosen as: wavelength - 800 nm, intensities - 100 mW, 200 mW, and 300 mW, and exposure times - 10 s and 60 s. Results were analyzed based on neurite outgrowth and the Live/Dead assay (Viability/Cytoxicity kit from Molecular Probes). No statistical difference (p >> 0.1, student t-test) in viability or function was found between the control neurons and those exposed to the laser. This confirms that laser guidance seems to be a promising method for cellular manipulation.

[1]  K. Greulich,et al.  Wavelength dependence of laser-induced DNA damage in lymphocytes observed by single-cell gel electrophoresis. , 1995, Journal of photochemistry and photobiology. B, Biology.

[2]  S. Heidemann,et al.  The culture of chick forebrain neurons. , 2003, Methods in cell biology.

[3]  Peter J. Hollenbeck,et al.  Neurons : methods and applications for the cell biologist , 2003 .

[4]  Charles P. Lin,et al.  Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen , 2000, Lasers in surgery and medicine.

[5]  K. O. Greulich,et al.  Comet Assay Measurements of DNA Damage in Cells by Laser Microbeams and Trapping Beams with Wavelengths Spanning a Range of 308 nm to 1064 nm , 2002, Radiation research.

[6]  A. Ashkin,et al.  History of optical trapping and manipulation of small-neutral particle, atoms, and molecules , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  D. Odde,et al.  Laser-guided direct writing for applications in biotechnology. , 1999, Trends in biotechnology.

[8]  Bradley R. Ringeisen,et al.  Laser Printing of Single Cells: Statistical Analysis, Cell Viability, and Stress , 2005, Annals of Biomedical Engineering.

[9]  Daniel Rothamel,et al.  Effects of an Er:YAG laser on mitochondrial activity of human osteosarcoma–derived osteoblasts in vitro , 2004, Lasers in Medical Science.

[10]  D. Odde,et al.  Laser-guided direct writing of living cells. , 2000, Biotechnology and bioengineering.

[11]  Ove Axner,et al.  Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence. , 2002, Biophysical journal.