Transmetalation: routes to metal exchange within metal–organic frameworks

The present work is a critical review of metal exchange (transmetalation) involving metal nodes and metalated struts in metal–organic frameworks. Particular emphasis is given to drawing parallels between different examples of transmetalation in order to understand the influence of coordination environment, solvents, nature of the metals and other variables on the process. We hope that the present review will be of use to those involved in the incorporation of various metal centers to create isostructural MOFs and study their properties.

[1]  B. Stoltz,et al.  Palladium-catalyzed oxidative wacker cyclizations in nonpolar organic solvents with molecular oxygen: a stepping stone to asymmetric aerobic cyclizations. , 2003, Angewandte Chemie.

[2]  J. Hupp,et al.  Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange , 2012 .

[3]  J. Eckert,et al.  Zeolite-like metal-organic frameworks (ZMOFs) as hydrogen storage platform: lithium and magnesium ion-exchange and H(2)-(rho-ZMOF) interaction studies. , 2009, Journal of the American Chemical Society.

[4]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[5]  Liwei Mi,et al.  Polymeric zinc ferrocenyl sulfonate as a molecular aspirator for the removal of toxic metal ions. , 2008, Chemistry.

[6]  M. P. Suh,et al.  High gas sorption and metal-ion exchange of microporous metal-organic frameworks with incorporated imide groups. , 2010, Chemistry.

[7]  K. Thomas,et al.  Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. , 2011, Nature communications.

[8]  Abraham M. Shultz,et al.  Post-synthesis modification of a metal-organic framework to form metallosalen-containing MOF materials. , 2011, Journal of the American Chemical Society.

[9]  K. Nakajima,et al.  Preparation and Characterization of Optically Active Quadridentate Schiff Base-Titanium(IV) Complexes and the Catalytic Properties of These Complexes on Asymmetric Oxidation of Methyl Phenyl Sulfide with Organic Hydroperoxides , 1991 .

[10]  Jie Su,et al.  A series of isostructural mesoporous metal-organic frameworks obtained by ion-exchange induced single-crystal to single-crystal transformation. , 2012, Dalton transactions.

[11]  Bin Zhao,et al.  A new type of polyhedron-based metal-organic frameworks with interpenetrating cationic and anionic nets demonstrating ion exchange, adsorption and luminescent properties. , 2011, Chemical communications.

[12]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[13]  A. J. Blake,et al.  Dynamic equilibria in solvent-mediated anion, cation and ligand exchange in transition-metal coordination polymers: solid-state transfer or recrystallisation? , 2009, Chemistry.

[14]  Seth M. Cohen,et al.  Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal–organic frameworks , 2012 .

[15]  Seth M. Cohen,et al.  Postsynthetic ligand and cation exchange in robust metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[16]  Myoung Soo Lah,et al.  Transmetalations in two metal–organic frameworks with different framework flexibilities: Kinetics and core–shell heterostructure , 2012 .

[17]  K. Nakajima,et al.  Asymmetric oxidation of sulfides to sulfoxides by organic hydroperoxides with optically active Schiff base-oxovanadium(IV) catalysts , 1986 .

[18]  C. Hu,et al.  Stepwise synthesis of metal-organic frameworks: replacement of structural organic linkers. , 2011, Journal of the American Chemical Society.

[19]  Abraham M. Shultz,et al.  Selective surface and near-surface modification of a noncatenated, catalytically active metal-organic framework material based on Mn(salen) struts. , 2011, Inorganic chemistry.

[20]  Hyunuk Kim,et al.  Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[21]  Myoung Soo Lah,et al.  Post-Synthetic Modifications of Framework Metal Ions in Isostructural Metal–Organic Frameworks: Core–Shell Heterostructures via Selective Transmetalations , 2012 .

[22]  Mohamed Eddaoudi,et al.  Post-synthetic modification of porphyrin-encapsulating metal-organic materials by cooperative addition of inorganic salts to enhance CO2/CH4 selectivity. , 2012, Angewandte Chemie.

[23]  Yun Liu,et al.  Increasing the density of adsorbed hydrogen with coordinatively unsaturated metal centers in metal-organic frameworks. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[24]  J. Hupp,et al.  Control over Catenation in Pillared Paddlewheel Metal–Organic Framework Materials via Solvent-Assisted Linker Exchange , 2013 .

[25]  J. Hupp,et al.  Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. , 2012, Journal of the American Chemical Society.

[26]  E. Jacobsen,et al.  Asymmetric catalysis of epoxide ring-opening reactions. , 2000, Accounts of chemical research.

[27]  H. A. Jahn,et al.  Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy , 1937 .

[28]  Seth M. Cohen,et al.  Systematic functionalization of a metal-organic framework via a postsynthetic modification approach. , 2008, Journal of the American Chemical Society.

[29]  Duilio Cascio,et al.  Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. , 2012, Inorganic chemistry.

[30]  K. Biradha,et al.  Post-synthetic modification of isomorphic coordination layers: exchange dynamics of metal ions in a single crystal to single crystal fashion. , 2012, Chemical communications.

[31]  L. Wojtas,et al.  Formation of a metalloporphyrin-based nanoreactor by postsynthetic metal-ion exchange of a polyhedral-cage containing a metal-metalloporphyrin framework. , 2013, Chemistry.

[32]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[33]  K. Reuter,et al.  Reversible gas-phase redox processes catalyzed by Co-exchanged MFU-4l(arge). , 2012, Chemical communications.

[34]  M. Eddaoudi,et al.  Templated synthesis, postsynthetic metal exchange, and properties of a porphyrin-encapsulating metal-organic material. , 2012, Journal of the American Chemical Society.

[35]  Mohamed Eddaoudi,et al.  Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities. , 2006, Chemical communications.

[36]  Nathaniel L. Rosi,et al.  Strain-promoted "click" modification of a mesoporous metal-organic framework. , 2012, Journal of the American Chemical Society.

[37]  S. Ng,,et al.  Rational Construction of Porous Polymeric Cadmium Ferrocene-1,1′-disulfonates for Transition Metal Ion Exchange and Sorption , 2007 .

[38]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[39]  Jin’an Zhao,et al.  Cation exchange induced tunable properties of a nanoporous octanuclear Cu(II) wheel with double-helical structure. , 2008, Journal of the American Chemical Society.

[40]  Daqiang Yuan,et al.  The 3D Channel Framework Based on Indium(III)–btec, and Its Ion‐Exchange Properties (btec = 1,2,4,5‐Benzenetetracarboxylate) , 2005 .

[41]  Dawei Feng,et al.  Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. , 2012, Angewandte Chemie.

[42]  Mohamed Eddaoudi,et al.  Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks based on a molecular cubohemioctahedron. , 2008, Journal of the American Chemical Society.

[43]  D. Cao,et al.  Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules , 2011 .

[44]  R. Clowes,et al.  A chiral, self-catenating and porous metal-organic framework and its post-synthetic metal uptake. , 2012, Angewandte Chemie.

[45]  Seth M Cohen,et al.  Postsynthetic modification of metal-organic frameworks--a progress report. , 2011, Chemical Society reviews.

[46]  Hong‐Cai Zhou,et al.  A route to metal-organic frameworks through framework templating. , 2013, Inorganic chemistry.

[47]  L. Cronin,et al.  Postsynthetic covalent modification of metal-organic framework (MOF) materials. , 2008, Angewandte Chemie.

[48]  J. Long,et al.  High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal-organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. , 2007, Journal of the American Chemical Society.

[49]  J. Botas,et al.  Hydrogen adsorption over Zeolite-like MOF materials modified by ion exchange , 2010 .

[50]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[51]  S. J. Kim,et al.  Anionic gallium-based metal-organic framework and its sorption and ion-exchange properties. , 2011, Inorganic Chemistry.

[52]  H. Hou,et al.  Study on the Reaction of Polymeric Zinc Ferrocenyl Carboxylate with Pb(II) or Cd(II) , 2009 .

[53]  J. Navarro,et al.  Cation-exchange porosity tuning in anionic metal-organic frameworks for the selective separation of gases and vapors and for catalysis. , 2010, Angewandte Chemie.

[54]  Yanli Zhao,et al.  Significant gas uptake enhancement by post-exchange of zinc(II) with copper(II) within a metal-organic framework. , 2012, Chemical communications.

[55]  J. Hupp,et al.  Solvent-assisted linker exchange (SALE) and post-assembly metallation in porphyrinic metal–organic framework materials , 2013 .

[56]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[57]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[58]  H. Hou,et al.  Structure extending and cation exchange of Cd(II) and Co(II) materials compounds inducing fluorescence signal mutation , 2010 .

[59]  S. Nguyen,et al.  A catalytically active vanadyl(catecholate)-decorated metal organic framework via post-synthesis modifications , 2012 .

[60]  Mark D. Allendorf,et al.  The Interaction of Water with MOF-5 Simulated by Molecular Dynamics , 2006 .

[61]  Kimoon Kim,et al.  Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. , 2004, Angewandte Chemie.

[62]  R. J. P. Williams,et al.  637. The stability of transition-metal complexes , 1953 .

[63]  S. Nguyen,et al.  A Zn-based, pillared paddlewheel MOF containing free carboxylic acids via covalent post-synthesis elaboration. , 2009, Chemical communications.

[64]  M. Dincǎ,et al.  Lattice-imposed geometry in metal–organic frameworks: lacunary Zn4O clusters in MOF-5 serve as tripodal chelating ligands for Ni2+ , 2012 .

[65]  David L. Rogow,et al.  Reversible anion exchange and catalytic properties of two cationic metal-organic frameworks based on Cu(I) and Ag(I). , 2010, Journal of the American Chemical Society.

[66]  Abraham M. Shultz,et al.  Active-site-accessible, porphyrinic metal-organic framework materials. , 2011, Journal of the American Chemical Society.

[67]  J. Botas,et al.  Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. , 2010, Langmuir : the ACS journal of surfaces and colloids.