QUANTUM DOT INFRARED DETECTORS AND SOURCES

InAs/GaAs quantum dot devices have the potential to be the leading technology for infrared detection and emission, which are necessary for many military and domestic applications. Quantum dot infrared photodetectors yield higher operating temperatures, lower dark currents, and more wavelength tunability. They also permit the detection of normal-incidence light. Quantum dot infrared sources are also expected to yield higher operating temperatures, in addition to lower threshold currents and higher modulation bandwidths. After a brief review of the history of infrared detection and emission, the optical and electrical characteristics of self-organized In(Ga)As/GaAs quantum dots grown by molecular beam epitaxy are discussed, followed by results for the quantum dot detectors and emitters that have been developed at the University of Michigan, Ann Arbor.

[1]  Jamie D. Phillips,et al.  Self-assembled InAs-GaAs quantum-dot intersubband detectors , 1999 .

[2]  Jasprit Singh,et al.  Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study , 1997 .

[3]  Veronique Thierry-Mieg,et al.  Long-wavelength (≈15.5 μm) unipolar semiconductor laser in GaAs quantum wells , 1997 .

[4]  Jasprit Singh,et al.  Rapid carrier relaxation in In 0.4 Ga 0.6 A s / G a A s quantum dots characterized by differential transmission spectroscopy , 1998 .

[5]  L. Goldstein,et al.  Growth by molecular beam epitaxy and characterization of InAs/GaAs strained‐layer superlattices , 1985 .

[6]  Carlo Sirtori,et al.  Mid‐infrared field‐tunable intersubband electroluminescence at room temperature by photon‐assisted tunneling in coupled‐quantum wells , 1994 .

[7]  Yozo Shimada,et al.  Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures , 1999 .

[8]  Victor Ryzhii,et al.  The theory of quantum-dot infrared phototransistors , 1996 .

[9]  Antoni Rogalski Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long wavelength focal plane arrays , 1999 .

[10]  Elias Towe,et al.  NORMAL-INCIDENCE INTERSUBBAND (IN, GA)AS/GAAS QUANTUM DOT INFRARED PHOTODETECTORS , 1998 .

[11]  A. Kastalsky,et al.  A dual-color injection laser based on intra- and inter-band carrier transitions in semiconductor quantum wells or quantum dots , 2001 .

[12]  D. Klotzkin,et al.  Quantum capture times at room temperature in high-speed In/sub 0.4/Ga/sub 0.6/As-GaAs self-organized quantum-dot lasers , 1997, IEEE Photonics Technology Letters.

[13]  Naoto Horiguchi,et al.  Quantum Dot Infrared Photodetector Using Modulation Doped InAs Self-Assembled Quantum Dots , 1999 .

[14]  G. Bastard,et al.  Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. , 1994, Physical review letters.

[15]  Henry I. Smith,et al.  FAR-INFRARED EMISSION FROM HOT QUASI-ONE-DIMENSIONAL QUANTUM WIRES IN GAAS , 1995 .

[16]  Sanjay Krishna,et al.  High-detectivity, normal-incidence, mid-infrared (λ∼4 μm)InAs/GaAs quantum-dot detector operating at 150 K , 2001 .

[17]  Harris,et al.  Vertically aligned and electronically coupled growth induced InAs islands in GaAs. , 1996, Physical review letters.

[18]  N. N. Ledentsov,et al.  Spontaneous far-IR emission accompanying transitions of charge carriers between levels of quantum dots , 1998 .

[19]  Jasprit Singh,et al.  Conduction band spectra in self-assembled InAs/GaAs dots: A comparison of effective mass and an eight-band approach , 1997 .

[20]  Sanjay Krishna,et al.  Intersubband gain and stimulated emission in long-wavelength (/spl lambda/=13 /spl mu/m) intersubband In(Ga)As-GaAs quantum-dot electroluminescent devices , 2001 .

[21]  Pallab Bhattacharya,et al.  Role of strain and growth conditions on the growth front profile of InxGa1−xAs on GaAs during the pseudomorphic growth regime , 1988 .

[22]  W. Gawron,et al.  Ultimate performance of infrared photodetectors and figure of merit of detector material , 1997 .

[23]  Jagadeesh Pamulapati,et al.  Realization of in-situ sub two-dimensional quantum structures by strained layer growth phenomena in the InxGa1- xAs/GaAs system , 1996 .

[24]  P. Bhattacharya,et al.  Reply: Room-temperature long-wavelength ( = 13.3 [micro sign]m) unipolar quantum dot intersubband laser , 2000 .

[25]  Yuansha Chen,et al.  Intraband absorption in the 8–12 μm band from Si-doped vertically aligned InGaAs/GaAs quantum-dot superlattice , 1998 .

[26]  M. Segev,et al.  Mid-infrared photoconductivity in InAs quantum dots , 1997 .

[27]  J. Faist,et al.  Quantum cascade unipolar intersubband light emitting diodes in the 8–13 μm wavelength region , 1995 .

[28]  P. Petroff,et al.  Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors , 1998 .

[29]  Z. Moussa,et al.  Room temperature infrared intersubband photoluminescence in GaAs quantum wells , 1997 .

[30]  John E. Bowers,et al.  Time‐resolved optical characterization of InGaAs/GaAs quantum dots , 1994 .

[31]  J. Gerard,et al.  IN-PLANE POLARIZED INTRABAND ABSORPTION IN INAS/GAAS SELF-ASSEMBLED QUANTUM DOTS , 1998 .

[32]  Gerhard Abstreiter,et al.  Normal-incident intersubband photocurrent spectroscopy on InAs/GaAs quantum dots , 1999 .

[33]  Hui C. Liu,et al.  Noise gain and operating temperature of quantum well infrared photodetectors , 1992 .

[34]  Nikolai N. Ledentsov,et al.  Multiphonon‐relaxation processes in self‐organized InAs/GaAs quantum dots , 1996 .

[35]  Allen,et al.  Intersubband emission from semiconductor superlattices excited by sequential resonant tunneling. , 1989, Physical review letters.

[36]  Carlo Sirtori,et al.  Quantum cascade laser: A new optical source in the mid-infrared , 1995 .

[37]  P. Bhattacharya,et al.  Far-infrared photoconductivity in self-organized InAs quantum dots , 1998 .

[38]  S. Denbaars,et al.  Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces , 1993 .

[39]  L. Levine,et al.  In situ scanning‐tunneling‐microscopy studies of current driven mass transport in Ag , 1993 .

[40]  Meimei Z. Tidrow,et al.  Device physics and state-of-the-art of quantum well infrared photodetectors and arrays , 2000 .

[41]  Sanjay Krishna,et al.  Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector , 2001 .

[42]  A. Madhukar,et al.  Onset of incoherency and defect introduction in the initial stages of molecular beam epitaxical growth of highly strained InxGa1−xAs on GaAs(100) , 1990 .

[43]  Hsien-Shun Wu,et al.  Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer , 2001 .

[44]  Hooman Mohseni,et al.  Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector , 1998 .

[45]  P. P. González-Borrero,et al.  Exciton localization and temperature stability in self‐organized InAs quantum dots , 1996 .

[46]  Clifton G. Fonstad,et al.  Theory, fabrication and characterization of quantum well infrared photodetectors , 2000 .

[47]  N. Ledentsov,et al.  Spontaneous ordering of arrays of coherent strained islands. , 1995, Physical review letters.

[48]  J. Brault,et al.  Strong normal-incidence infrared absorption in self-organized InAs/InAlAs quantum dots grown on InP(001) , 1999 .

[49]  James L. Merz,et al.  Selective excitation of the photoluminescence and the energy levels of ultrasmall InGaAs/GaAs quantum dots , 1994 .

[50]  Nobuhiko P. Kobayashi,et al.  In situ, atomic force microscope studies of the evolution of InAs three‐dimensional islands on GaAs(001) , 1996 .

[51]  X. Fang,et al.  Above-room-temperature continuous-wave mid-infrared photoluminescence from PbSe/PbSrSe quantum wells , 1999 .

[52]  C. H. Wang,et al.  Characteristics of InGaAs quantum dot infrared photodetectors , 1998 .

[53]  Self-organized growth of InAsGaAs quantum boxes , 1996 .

[54]  Jasprit Singh,et al.  Photoluminescence and time-resolved photoluminescence characteristics of InxGa(1−x)As/GaAs self-organized single- and multiple-layer quantum dot laser structures , 1997 .

[55]  K. Nishi,et al.  A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates , 1999 .

[56]  G. Abstreiter Micro-Raman spectroscopy for characterization of semiconductor devices , 1991 .

[57]  W. A. Beck,et al.  Photoconductive gain and generation‐recombination noise in multiple‐quantum‐well infrared detectors , 1993 .

[58]  Nikolai N. Ledentsov,et al.  InAs/GaAs quantum dots radiative recombination from zero‐dimensional states , 1995 .

[59]  Nikolai N. Ledentsov,et al.  Excited states in self‐organized InAs/GaAs quantum dots: Theory and experiment , 1996 .

[60]  Kobayashi,et al.  Vertically self-organized InAs quantum box islands on GaAs(100). , 1995, Physical review letters.

[61]  J. Singh,et al.  Possibility of room temperature intra-band lasing in quantum dot structures placed in high-photon density cavities , 1996, IEEE Photonics Technology Letters.

[62]  Elias Towe,et al.  Photovoltaic quantum-dot infrared detectors , 2000 .

[63]  P. Bhattacharya,et al.  Observation of phonon bottleneck in quantum dot electronic relaxation. , 2001, Physical review letters.

[64]  N. N. Ledentsov,et al.  Midinfrared emission from near-infrared quantum-dot lasers , 2000 .

[65]  Anupam Madhukar,et al.  Realization of optically active strained InAs island quantum boxes on GaAs(100) via molecular beam epitaxy and the role of island induced strain fields , 1995 .

[66]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[67]  Pallab Bhattacharya,et al.  Room-temperature far-infrared emission from a self-organized InGaAs/GaAs quantum-dot laser , 2000 .