Essentially large divisors and their arithmetic and function-theoretic inequalities

Abstract. Motivated by the classical Theorems of Picard and Siegel and their generalizations, we define the notion of an essentially large effective divisor and derive some of its arithmetic and function-theoretic consequences. We then investigate necessary and sufficient criteria for divisors to be essentially large. In essence, we prove that on a nonsingular irreducible projective variety X with Pic(X) = Z, every effective divisor with dimX + 2 or more components in general position is essentially large.

[1]  A. Levin,et al.  Integral points on threefolds and other varieties , 2009 .

[2]  U. Zannier,et al.  Addendum to "On a general Thue's equation" , 2006 .

[3]  A. Levin Generalizations of Siegel's and Picard's theorems , 2005, math/0503699.

[4]  U. Zannier,et al.  On a general Thue's equation , 2004 .

[5]  J. Evertse,et al.  A Generalization of the Subspace Theorem With Polynomials of Higher Degree , 2004, math/0408381.

[6]  M. Ru A defect relation for holomorphic curves intersecting hypersurfaces , 2004 .

[7]  U. Zannier,et al.  On the number of integral points on algebraic curves , 2003 .

[8]  U. Zannier,et al.  On integral points on surfaces , 2002, math/0206100.

[9]  R. Ferretti Mumford's Degree of Contact and Diophantine Approximations , 1998, Compositio Mathematica.

[10]  Paul Vojta On Cartan's theorem and Cartan's conjecture , 1997 .

[11]  G. Faltings,et al.  Diophantine approximations on projective spaces , 1994 .

[12]  Paul Vojta A Refinement of Schmidt's Subspace Theorem , 1989 .

[13]  Paul Vojta Diophantine Approximations and Value Distribution Theory , 1987 .

[14]  S. Lang Fundamentals of Diophantine Geometry , 1983 .

[15]  M. Green Some Picard Theorems for Holomorphic Maps to Algebraic Varieties , 1975 .

[16]  R. Hartshorne Varieties of small codimension in projective space , 1974 .

[17]  A. Ogus Local cohomological dimension of algebraic varieties , 1973 .

[18]  M. E. Larsen On the topology of complex projective manifolds , 1973 .

[19]  Wolf Barth,et al.  Transplanting Cohomology Classes in Complex-Projective Space , 1970 .

[20]  M. Ru,et al.  Holomorphic curves into algebraic varieties , 2009 .

[21]  P. Autissier GÉOMÉTRIE, POINTS ENTIERS ET COURBES ENTIÈRES , 2009 .

[22]  U. Zannier,et al.  On the integral points on certain surfaces , 2006 .

[23]  E. Bombieri,et al.  Heights in Diophantine Geometry , 2006 .

[24]  Robert Lazarsfeld,et al.  Positivity in algebraic geometry , 2004 .

[25]  J. Evertse,et al.  Diophantine inequalities on projective varieties , 2002 .

[26]  U. Zannier,et al.  A subspace theorem approach to integral points on curves , 2002 .

[27]  RU Min ON A GENERAL FORM OF THE SECOND MAIN THEOREM , 1997 .