Tropical Effective Primary and Dual Nullstellensätze

Tropical algebra is an emerging field with a number of applications in various areas of mathematics. In many of these applications appeal to tropical polynomials allows studying properties of mathematical objects such as algebraic varieties from the computational point of view. This makes it important to study both mathematical and computational aspects of tropical polynomials. In this paper we prove a tropical Nullstellensatz, and moreover, we show an effective formulation of this theorem. Nullstellensatz is a natural step in building algebraic theory of tropical polynomials and its effective version is relevant for computational aspects of this field. On our way we establish a simple formulation of min-plus and tropical linear dualities. We also observe a close connection between tropical and min-plus polynomial systems.

[1]  Dima Grigoriev,et al.  Tropical Cryptography , 2013, IACR Cryptol. ePrint Arch..

[2]  P. Butkovic Max-linear Systems: Theory and Algorithms , 2010 .

[3]  Dima Grigoriev,et al.  Complexity of Tropical and Min-plus Linear Prevarieties , 2013, computational complexity.

[4]  Alexander E. Guterman,et al.  Tropical Polyhedra are Equivalent to mean Payoff Games , 2009, Int. J. Algebra Comput..

[5]  Douglas Lind,et al.  Non-archimedean amoebas and tropical varieties , 2004, math/0408311.

[6]  Volker Weispfenning,et al.  The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.

[7]  Dima Grigoriev,et al.  Complexity of Null-and Positivstellensatz proofs , 2001, Ann. Pure Appl. Log..

[8]  D. Lazard Algèbre linéaire sur $K[X_1,\dots,X_n]$ et élimination , 1977 .

[9]  Thorsten Theobald,et al.  On the frontiers of polynomial computations in tropical geometry , 2004, J. Symb. Comput..

[10]  Dima Grigoriev,et al.  Complexity of Solving Tropical Linear Systems , 2013, computational complexity.

[11]  Marc Giusti,et al.  On the efficiency of effective Nullstellensätze , 2005, computational complexity.

[12]  Stasys Jukna Lower Bounds for Tropical Circuits and Dynamic Programs , 2014, Theory of Computing Systems.

[13]  Z. Izhakian,et al.  The Tropical Rank of a Tropical Matrix , 2006, math/0604208.

[14]  Zur Izhakian Tropical Algebraic Sets, Ideals and an Algebraic Nullstellensatz , 2008, Int. J. Algebra Comput..

[15]  Dima Grigoriev,et al.  On a tropical dual Nullstellensatz , 2011, Adv. Appl. Math..

[16]  B. Sturmfels SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[17]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[18]  Thorsten Theobald,et al.  Combinatorics and Genus of Tropical Intersections and Ehrhart Theory , 2009, SIAM J. Discret. Math..

[19]  A. Bertram,et al.  The tropical Nullstellensatz for congruences , 2017 .

[20]  B. Sturmfels,et al.  On the rank of a tropical matrix , 2003 .

[21]  Bernd Sturmfels,et al.  Tropicalization of Del Pezzo Surfaces , 2014, 1402.5651.

[22]  L. Alonso Tropical resultants for curves and stable intersection , 2008 .

[23]  Eugenii Shustin,et al.  A tropical nullstellensatz , 2005, math/0508413.

[24]  B. Sturmfels,et al.  First steps in tropical geometry , 2003, math/0306366.

[25]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[26]  Eugenii Shustin,et al.  Tropical Algebraic Geometry , 2007 .

[27]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[28]  Rekha R. Thomas,et al.  Computing tropical varieties , 2007, J. Symb. Comput..

[29]  Dima Grigoriev,et al.  Bounds on the Number of Connected Components for Tropical Prevarieties , 2017, Discret. Comput. Geom..

[30]  Daniel Lazard,et al.  Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..

[31]  S. Gaubert,et al.  Linear independence over tropical semirings and beyond , 2008, 0812.3496.

[32]  Dima Grigoriev,et al.  Tropical Effective Primary and Dual Nullstellens"atze , 2015, STACS.

[33]  Tropical Resultants for Curves and Stable Intersection , 2008, 0805.1305.

[34]  Kevin Purbhoo A Nullstellensatz for amoebas , 2006, math/0603201.

[35]  Grigory Mikhalkin,et al.  Amoebas of Algebraic Varieties and Tropical Geometry , 2004, math/0403015.