직접분사식 소형 디젤엔진의 실린더내 스월 유동장에 미치는 흡기포트의 형상에 관한 연구
暂无分享,去创建一个
This paper studies the effects of intake port configuration on the swirl that is key parameter in the flow field of direct injection diesel engines. In-cylinder flow characteristics is known to have significant effects on fuel air mixing, combustion and emissions. To investigate the swirl flow generated by various intake ports, steady state flow tests were conducted to evaluate the swirl. Helical port geometry, SCV shape and bypass were selected as the design parameters to increase the swirl flow and parametric study was performed to choose the optimal port shape that would generate a high swirl ratio efficiently. The results revealed that a key factor in generating a high swirl ratio was to suitably control the direction of the intake air flow passing through the valve seat. For these purposes, we changed the distance of helical and tangential port as well as installed bypass near the valve seat and the effects of intake port geometry on in-cylinder flow field were visualized by a laser sheet visualization method. From the experimental results, we found that the swirl ratio and mass flow rate had a trade off relation. In addition, the result indicates that the bypass is a effective method to increase the swirl ratio without sacrificing mass flow rate.
[1] 이석영,et al. 개선된 단일영역 열발생량 계산법을 사용한 소형 HSDI와 IDI엔진의 연소특성 비교에 관한 연구 , 2004 .