High efficiency organic/silicon hybrid solar cells with doping-free selective emitter structure induced by a WO3 thin interlayer

[1]  H. Meng,et al.  Characteristics of a silicon nanowires/PEDOT:PSS heterojunction and its effect on the solar cell performance. , 2015, ACS applied materials & interfaces.

[2]  Hongzheng Chen,et al.  Interface engineering for efficient and stable chemical-doping-free graphene-on-silicon solar cells by introducing a graphene oxide interlayer , 2014 .

[3]  Shui-Tong Lee,et al.  13.8% Efficiency Hybrid Si/Organic Heterojunction Solar Cells with MoO3 Film as Antireflection and Inversion Induced Layer , 2014, Advanced materials.

[4]  K. Leung,et al.  Defect‐Minimized PEDOT:PSS/Planar‐Si Solar Cell with Very High Efficiency , 2014 .

[5]  D. Cahen,et al.  n‐Si–Organic Inversion Layer Interfaces: A Low Temperature Deposition Method for Forming a p–n Homojunction in n‐Si , 2014 .

[6]  Boyuan Qi,et al.  High-performance hybrid organic-inorganic solar cell based on planar n-type silicon , 2014 .

[7]  Qiming Liu,et al.  Plasmonic‐enhanced crystalline silicon/organic heterojunction cells by incorporating gold nanoparticles , 2014 .

[8]  A. Ajji,et al.  Solution processed approaches for bulk-heterojunction solar cells based on Pb and Cd chalcogenide nanocrystals , 2014 .

[9]  Shui-Tong Lee,et al.  The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells , 2014 .

[10]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[11]  Shui-Tong Lee,et al.  Hole electrical transporting properties in organic-Si Schottky solar cell , 2013 .

[12]  Qiming Liu,et al.  Effects of molybdenum oxide molecular doping on the chemical structure of poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) and on carrier collection efficiency of silicon/poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) heterojunction solar cells , 2013 .

[13]  Nasrudin Abd Rahim,et al.  Progress in solar PV technology: Research and achievement , 2013 .

[14]  Dong Liu,et al.  An 11%-Power-Conversion-Efficiency Organic–Inorganic Hybrid Solar Cell Achieved by Facile Organic Passivation , 2013, IEEE Electron Device Letters.

[15]  Qiming Liu,et al.  Green-tea modified multiwalled carbon nanotubes for efficient poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate)/n-silicon hybrid solar cell , 2013 .

[16]  Ashraf Uddin,et al.  Organic - Inorganic Hybrid Solar Cells: A Comparative Review , 2012 .

[17]  C. Brabec,et al.  High Fill Factor Polymer Solar Cells Incorporating a Low Temperature Solution Processed WO3 Hole Extraction Layer , 2012 .

[18]  A. Kahn,et al.  Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications , 2012, Advanced materials.

[19]  P. Yu,et al.  Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency , 2012 .

[20]  F. Kang,et al.  Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer. , 2012, Physical chemistry chemical physics : PCCP.

[21]  Yi Jia,et al.  Graphene‐On‐Silicon Schottky Junction Solar Cells , 2010, Advanced materials.

[22]  M. Green,et al.  n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells , 2009 .

[23]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[24]  D. Pavlidis,et al.  Enhanced transmission line model structures for accurate resistance evaluation of small-size contacts and for more reliable fabrication , 1999 .

[25]  A. Fujishima,et al.  Photochromic characteristics of mixed WO3-MoO3 thin films in alcohol vapors , 1991 .

[26]  N. Cheung,et al.  Extraction of Schottky diode parameters from forward current-voltage characteristics , 1986 .