Cubic Ideals and Lattices
暂无分享,去创建一个
[1] Karim Belabas,et al. Computing the residue of the Dedekind zeta function , 2013, Math. Comput..
[2] D. Faddeev,et al. The theory of irrationalities of the third degree , 2009 .
[3] S. Louboutin. The Brauer–Siegel Theorem , 2005 .
[4] S. Louboutin. Explicit Upper Bounds for Residues of Dedekind Zeta Functions and Values of L-Functions at s = 1, and Explicit Lower Bounds for Relative Class Numbers of CM-Fields , 1994, Canadian Journal of Mathematics.
[5] Henri Cohen,et al. Advanced topics in computational number theory , 2000 .
[6] H. Cohen,et al. Binary cubic forms and cubic number fields , 1997 .
[7] Karim Belabas,et al. A fast algorithm to compute cubic fields , 1997, Math. Comput..
[8] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[9] Michael Rosen,et al. Algebraic Number Theory , 1990 .
[10] E. Nart,et al. Effective determination of the decomposition of the rational primes in a cubic field , 1983 .
[11] Michael Rosen,et al. A classical introduction to modern number theory , 1982, Graduate texts in mathematics.
[12] Harvey Cohn,et al. Advanced Number Theory , 1980 .
[13] L. Mordell,et al. Diophantine equations , 1969 .
[14] Ernst S. Selmer,et al. The diophantine equationax3+by3+cz3=0. Completion of the tables , 1954 .
[15] Ernst S. Selmer,et al. The diophantine equationax3+by3+cz3=0. , 1951 .
[16] A. Wintner. A Factorization of the Densities of the Ideals in Algebraic Number Fields , 1946 .
[17] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[18] H. Hasse. Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage , 1930 .