Cubic Ideals and Lattices

[1]  Karim Belabas,et al.  Computing the residue of the Dedekind zeta function , 2013, Math. Comput..

[2]  D. Faddeev,et al.  The theory of irrationalities of the third degree , 2009 .

[3]  S. Louboutin The Brauer–Siegel Theorem , 2005 .

[4]  S. Louboutin Explicit Upper Bounds for Residues of Dedekind Zeta Functions and Values of L-Functions at s = 1, and Explicit Lower Bounds for Relative Class Numbers of CM-Fields , 1994, Canadian Journal of Mathematics.

[5]  Henri Cohen,et al.  Advanced topics in computational number theory , 2000 .

[6]  H. Cohen,et al.  Binary cubic forms and cubic number fields , 1997 .

[7]  Karim Belabas,et al.  A fast algorithm to compute cubic fields , 1997, Math. Comput..

[8]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[9]  Michael Rosen,et al.  Algebraic Number Theory , 1990 .

[10]  E. Nart,et al.  Effective determination of the decomposition of the rational primes in a cubic field , 1983 .

[11]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[12]  Harvey Cohn,et al.  Advanced Number Theory , 1980 .

[13]  L. Mordell,et al.  Diophantine equations , 1969 .

[14]  Ernst S. Selmer,et al.  The diophantine equationax3+by3+cz3=0. Completion of the tables , 1954 .

[15]  Ernst S. Selmer,et al.  The diophantine equationax3+by3+cz3=0. , 1951 .

[16]  A. Wintner A Factorization of the Densities of the Ideals in Algebraic Number Fields , 1946 .

[17]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[18]  H. Hasse Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage , 1930 .