Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial

A 1.5λ0-thick planoconcave zoned lens based on the fishnet metamaterial is demonstrated experimentally at millimeter wavelengths. The zoning technique applied allows a volume reduction of 60% compared to a full fishnet metamaterial lens without any deterioration in performance. The structure is designed to exhibit an effective refractive index n = −0.25 at f = 56.7 GHz (λ0 = 5.29 mm) with a focal length FL = 47.62 mm = 9λ0. The experimental enhancement achieved is 11.1 dB, which is in good agreement with simulation and also with previous full fishnet metamaterial lenses and opens the door for integrated solutions.

[1]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[2]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[3]  Mario Sorolla,et al.  Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission , 2011 .

[4]  Mario Sorolla,et al.  Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays. , 2006, Optics express.

[5]  D. Mittleman,et al.  A Maxwell's fish eye lens for the terahertz region , 2013 .

[6]  M. Navarro-Cía,et al.  Beamforming by Left-Handed Extraordinary Transmission Metamaterial Bi- and Plano-Concave Lens at Millimeter-Waves , 2011, IEEE Transactions on Antennas and Propagation.

[7]  Mario Sorolla,et al.  Converging biconcave metallic lens by double-negative extraordinary transmission metamaterial , 2009 .

[8]  M. Beruete,et al.  Negative refraction in a prism made of stacked subwavelength hole arrays. , 2008, Optics express.

[9]  Claudio G. Parazzoli,et al.  Simulation and testing of a graded negative index of refraction lens , 2005 .

[10]  Irina Snigireva,et al.  X-ray refractive planar lens with minimized absorption , 2000 .

[11]  M. Navarro-Cía,et al.  Planoconcave lens by negative refraction of stacked subwavelength hole arrays. , 2008, Optics express.

[12]  R. W. Wood,et al.  Anomalous Diffraction Gratings , 1935 .

[13]  Mario Sorolla,et al.  Lensing system and Fourier transformation using epsilon-near-zero metamaterials , 2012 .

[14]  A. M. Vetter,et al.  Performance of a negative index of refraction lens , 2004 .

[15]  W. E. Kock,et al.  Metal-Lens Antennas , 1946, Proceedings of the IRE.

[16]  L. Verslegers,et al.  Planar lenses based on nanoscale slit arrays in a metallic film , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[17]  Hristo D. Hristov,et al.  Fresnal Zones in Wireless Links, Zone Plate Lenses and Antennas , 2000 .

[18]  F. J. Rodríguez-Fortuño,et al.  Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays , 2009 .

[19]  E. N. Economou,et al.  Saturation of the magnetic response of split-ring resonators at optical frequencies. , 2005, Physical review letters.

[20]  Miguel Beruete,et al.  Fishnet metamaterial from an equivalent circuit perspective , 2012 .

[21]  K. Malloy,et al.  Experimental demonstration of near-infrared negative-index metamaterials. , 2005, Physical review letters.

[22]  Mario Sorolla,et al.  Terahertz epsilon-near-zero graded-index lens. , 2013, Optics express.

[23]  D. Mittleman,et al.  A 2-D Artificial Dielectric With ${0 \leq n < 1}$ for the Terahertz Region , 2010, IEEE Transactions on Microwave Theory and Techniques.

[24]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[25]  Mario Sorolla,et al.  Viability of focusing effect by left-handed stacked subwavelength hole arrays , 2010 .