λ-WMAP: a statistical speckle filter operating in the wavelet domain

In this paper we introduce the Γ-WMAP filter, a wavelet based equivalent to the classical Γ-MAP filter. We model speckle as additive signal-dependent noise, and propose to use the normal inverse Gaussian (NIG) distribution as a statistical model for the wavelet coefficients of both the reflectance image and the noise image. A method for estimating the parameters of the proposed statistical models is presented, and we show that the NIG distribution makes excellent fits to the distributions of the wavelet coefficients of single-look synthetic aperture radar (SAR) images. The performance of the Γ-WMAP filter is tested on three single-look SAR images. We find that when the filter is used in a global mode it may severely blur the image. However, when applied in a local, adaptive mode the new algorithm has excellent de-speckling performance. Visual comparisons with the Γ-MAP filter show that Γ-WMAP tends to give better de-speckling. Quantitative comparisons in homogeneous regions using both the equivalent number of looks and the log standard deviation as measures definitely show that the Γ-WMAP gives better speckle filtering.

[1]  J. Goodman Some fundamental properties of speckle , 1976 .

[2]  Jong-Sen Lee,et al.  Refined filtering of image noise using local statistics , 1981 .

[3]  J. R. Michael The stabilized probability plot , 1983 .

[4]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Jong-Sen Lee Speckle suppression and analysis for synthetic aperture radar images , 1986 .

[6]  C. Oliver Information from SAR images , 1991 .

[7]  E. Nezry,et al.  Structure detection and statistical adaptive speckle filtering in SAR images , 1993 .

[8]  Donald B. Percival,et al.  Maximum likelihood estimation of K distribution parameters for SAR data , 1993, IEEE Trans. Geosci. Remote. Sens..

[9]  Ramesh A. Gopinath,et al.  Wavelet based speckle reduction with application to SAR based ATD/R , 1994, Proceedings of 1st International Conference on Image Processing.

[10]  B. Silverman,et al.  The Stationary Wavelet Transform and some Statistical Applications , 1995 .

[11]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[12]  C. Sidney Burrus,et al.  Wavelet-based SAR speckle reduction and image compression , 1995, Defense, Security, and Sensing.

[13]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[14]  Rui Yu,et al.  An optimal wavelet thresholding method for speckle noise reduction , 1996 .

[15]  O. Barndorff-Nielsen Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .

[16]  A. JouanD Speckle Filtering of Sar Images -a Comparative Study between Complex-wavelet-based and Standard Filters , 1997 .

[17]  A. Bijaoui,et al.  6 - Méthodes multiéchelles appliquées à l'analyse des images radar à ouverture synthétique , 1997 .

[18]  Torbjørn Eltoft,et al.  Non-Gaussian signal statistics in ocean SAR imagery , 1998, IEEE Trans. Geosci. Remote. Sens..

[19]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[20]  Eric Hervet,et al.  Comparison of wavelet-based and statistical speckle filters , 1998, Remote Sensing.

[21]  H. Hirosawa,et al.  Suppression of speckle in synthetic aperture radar images using wavelet , 1998 .

[22]  L. Gagnon Wavelet Filtering of Speckle Noise - Some Numerical Results , 1999 .

[23]  Boualem Boashash,et al.  A method for estimating the parameters of the K distribution , 1999, IEEE Trans. Signal Process..

[24]  Yusen Dong,et al.  Speckle suppression using recursive wavelet transforms , 1999 .

[25]  Sadaoki Furui,et al.  Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm , 2000, IEEE Trans. Signal Process..

[26]  Robert Jenssen,et al.  SPARSE CODE SHRINKAGE BASED ON THE NORMAL INVERSE GAUSSIAN DENSITY MODEL , 2001 .

[27]  Jean-Marc Boucher,et al.  Multiscale MAP filtering of SAR images , 2001, IEEE Trans. Image Process..

[28]  Alfred Hanssen,et al.  The normal inverse Gaussian distribution: a versatile model for heavy-tailed stochastic processes , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[29]  Jacek M. Zurada,et al.  Estimation of K distribution parameters using neural networks , 2002, IEEE Transactions on Biomedical Engineering.