An engineer's guide to soliton phenomena: Application of the finite element method

Abstract The paper attempts an elementary survey of the physical and mathematical background appertaining to solitons and discusses in particular the numerical solution of three types of dispersive nonlinear partial differential equations exhibiting soliton-type solutions, namely the Korteweg-de Vries equation, the Nonlinear Schrodinger equation, and the Sine-Gordon equation. Throughout this study a semidiscrete Galerkin method is applied using a finite element discretization in space and a step-by-step time integration of the resulting system of nonlinear ordinary differential equations. Depending upon the special type of the evolutionary equation the application of a Petrov-Galerkin procedure may increase significantly the numerical stability. Accuracy and effectivity of the different approaches are demonstrated on a series of computer plots.

[1]  C. S. Gardner,et al.  Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .

[2]  David F. Griffiths,et al.  A numerical study of the nonlinear Schrödinger equation , 1984 .

[3]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .

[4]  Ben M. Herbst,et al.  Numerical Experience with the Nonlinear Schrödinger Equation , 1985 .

[5]  J. G. Verwer,et al.  Conerservative and Nonconservative Schemes for the Solution of the Nonlinear Schrödinger Equation , 1986 .

[6]  M. E. Alexander,et al.  Galerkin methods applied to some model equations for non-linear dispersive waves , 1979 .

[7]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[8]  L. Collatz The numerical treatment of differential equations , 1961 .

[9]  M. Revilla Simple time and space adaptation in one-dimensional evolutionary partial differential equations , 1986 .

[10]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .

[11]  The Galerkin Method Based on Hermite Cubics , 1979 .

[12]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[13]  A. Seeger,et al.  Theorie der Versetzungen in eindimensionalen Atomreihen , 1953 .

[14]  J. M. Sanz-Serna,et al.  A Method for the Integration in Time of Certain Partial Differential Equations , 1983 .

[15]  J. M. Sanz-Serna,et al.  Petrov-Galerkin methods for nonlinear dispersive waves , 1981 .

[16]  On the stability of the nonlinear Schrödinger equation , 1985 .

[17]  C. Fletcher Computational Galerkin Methods , 1983 .

[18]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[19]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[20]  A. R. Mitchell,et al.  Product Approximation for Non-linear Problems in the Finite Element Method , 1981 .

[21]  R. Bullough,et al.  The Soliton and Its History , 1980 .

[22]  G. Lamb Elements of soliton theory , 1980 .

[23]  L. Bianchi Vorlesungen über Differentialgeometrie I , 1899 .

[24]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .

[25]  I. Christie,et al.  A simple adaptive technique for nonlinear wave problems , 1986 .