Resource bounded randomness and its applications
暂无分享,去创建一个
[1] Elvira Mayordomo,et al. Effective Fractal Dimension in Algorithmic Information Theory , 2008 .
[2] André Nies,et al. Randomness and Differentiability , 2011, ArXiv.
[3] Hadi Shafei,et al. Nonuniform Reductions and NP-Completeness , 2018, Electron. Colloquium Comput. Complex..
[4] N. V. Vinodchandran,et al. Entropy rates and finite-state dimension , 2005, Theor. Comput. Sci..
[5] Donald M. Stull,et al. Polynomial Space Randomness in Analysis , 2015, MFCS.
[6] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..
[7] Rodney G. Downey,et al. Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.
[8] Alex Galicki. Polynomial-Time Rademacher Theorem, Porosity and Randomness , 2017, ICALP.
[9] Klaus Ambos-Spies,et al. Resource-Bounded Measure and Randomness , 2019, complexity, logic, and recursion theory.
[10] Jack H. Lutz,et al. Cook Versus Karp-Levin: Separating Completeness Notions if NP is not Small , 1996, Theor. Comput. Sci..
[11] M. Borel. Les probabilités dénombrables et leurs applications arithmétiques , 1909 .
[12] Claus-Peter Schnorr,et al. A unified approach to the definition of random sequences , 1971, Mathematical systems theory.
[13] Russell Impagliazzo,et al. A zero-one law for RP and derandomization of AM if NP is not small , 2009, Inf. Comput..
[14] H. Lebesgue. Sur l'intégration des fonctions discontinues , 1910 .
[15] Jack H. Lutz,et al. Finite-state dimension and real arithmetic , 2007, Inf. Comput..
[16] Yongge Wang,et al. Resource-Bounded Balanced Genericity, Stochasticity and Weak Randomness , 1996, STACS.
[17] A. Nies. Computability and randomness , 2009 .
[18] Elvira Mayordomo,et al. A Kolmogorov complexity characterization of constructive Hausdorff dimension , 2002, Inf. Process. Lett..
[19] Kenshi Miyabe,et al. Characterization of Kurtz Randomness by a Differentiation Theorem , 2012, Theory of Computing Systems.
[20] Claus-Peter Schnorr,et al. Endliche Automaten und Zufallsfolgen , 1972, Acta Informatica.
[21] Péter Gács,et al. Exact Expressions for Some Randomness Tests , 1979, Math. Log. Q..
[22] ComplexityValentine KabanetsDecember. Randomness and Complexity , 1997 .
[23] Johanna N. Y. Franklin,et al. Martin-Löf random points satisfy Birkhoff’s ergodic theorem for effectively closed sets , 2012 .
[24] Klaus Ambos-Spies,et al. Diagonalizations over Polynomial Time Computable Sets , 1987, Theor. Comput. Sci..
[25] Boris Ryabko,et al. The Complexity and Effectiveness of Prediction Algorithms , 1994, J. Complex..
[26] Jack H. Lutz,et al. Effective Strong Dimension, Algorithmic Information, and Computational Complexity , 2002, ArXiv.
[27] Frank Stephan,et al. Hausdorff dimension in exponential time , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.
[28] Jack H. Lutz. Almost Everywhere High Nonuniform Complexity , 1992, J. Comput. Syst. Sci..
[29] Meir Feder,et al. Gambling using a finite state machine , 1991, IEEE Trans. Inf. Theory.
[30] Jack H. Lutz,et al. The dimensions of individual strings and sequences , 2002, Inf. Comput..
[31] John T. Gill,et al. Computational complexity of probabilistic Turing machines , 1974, STOC '74.
[32] Yongge Wang. Resource bounded randomness and computational complexity , 2000, Theor. Comput. Sci..
[33] André Nies,et al. Differentiability of polynomial time computable functions , 2014, STACS.
[34] Jack H. Lutz,et al. Dimension in complexity classes , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.
[35] Jack H. Lutz,et al. Modeling Time-Bounded Prefix Kolmogorov Complexity , 2000, Theory of Computing Systems.
[36] G. Shafer,et al. On the history of martingales in the study of randomness , 2009 .
[37] Jing Zhang,et al. Using Almost-everywhere theorems from Analysis to Study Randomness , 2014, Bull. Symb. Log..
[38] Jack H. Lutz,et al. The complexity and distribution of hard problems , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[39] Dieter van Melkebeek. The zero-one law holds for BPP , 2000, Theor. Comput. Sci..
[40] H. Lebesgue,et al. Sur les intégrales singulières , 1909 .
[41] John M. Hitchcock,et al. Strong Reductions and Isomorphism of Complete Sets , 2014, Comput..
[42] Jeremy J. Ramsden,et al. Randomness and complexity , 2015 .
[43] Ker-I Ko,et al. On the Notion of Infinite Pseudorandom Sequences , 1986, Theor. Comput. Sci..
[44] V. V'yugin. Ergodic Theorems for Individual Random Sequences , 1998, Theor. Comput. Sci..
[45] Mathieu Hoyrup,et al. A constructive version of Birkhoff's ergodic theorem for Martin-Löf random points , 2010, Inf. Comput..
[46] Andrea Sorbi,et al. New Computational Paradigms: Changing Conceptions of What is Computable , 2007 .
[47] Samuel R. Buss,et al. Sub-computable Boundedness Randomness , 2014, Log. Methods Comput. Sci..
[48] Johanna N. Y. Franklin,et al. Randomness and Non-ergodic Systems , 2012, 1206.2682.
[49] Lance Fortnow,et al. Infinitely-Often Autoreducible Sets , 2006, SIAM J. Comput..
[50] C. Schnorr. Zufälligkeit und Wahrscheinlichkeit , 1971 .
[51] Claude Sureson. Subcomputable Schnorr Randomness , 2017, Log. Methods Comput. Sci..
[52] Jack H. Lutz,et al. Dimensions of Copeland-Erdös Sequences , 2005, FSTTCS.
[53] J. Shepherdson. Computational Complexity of Real Functions , 1985 .
[54] Jin-Yi Cai,et al. Pseudorandom generators, measure theory, and natural proofs , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.
[55] Stephen G. Simpson,et al. Schnorr randomness and the Lebesgue differentiation theorem , 2013 .
[56] J. H. Lutz,et al. Effective fractal dimension: foundations and applications , 2003 .
[57] Jean-Luc Ville. Étude critique de la notion de collectif , 1939 .
[58] Elvira Mayordomo. Almost Every Set in Exponential Time is P-bi-Immune , 1994, Theor. Comput. Sci..
[59] Ludwig Staiger,et al. A Tight Upper Bound on Kolmogorov Complexity and Uniformly Optimal Prediction , 1998, Theory of Computing Systems.
[60] John M. Hitchcock,et al. Comparing reductions to NP-complete sets , 2006, Inf. Comput..
[61] P. Erdös,et al. Note on normal numbers , 1946 .
[62] Sebastiaan Terwijn,et al. Resource Bounded Randomness and Weakly Complete Problems , 1994, Theor. Comput. Sci..
[63] Philippe Moser. A zero-one SUBEXP-dimension law for BPP , 2011, Inf. Process. Lett..
[64] Lance Fortnow,et al. Extracting Kolmogorov complexity with applications to dimension zero-one laws , 2006, Inf. Comput..
[65] Jack H. Lutz,et al. The quantitative structure of exponential time , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.