Punctuated Evolution of Prostate Cancer Genomes

[1]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[2]  A. McKenna,et al.  Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia , 2012, Cell.

[3]  S. Gabriel,et al.  Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability , 2012, Genome research.

[4]  Stephen P. Jackson,et al.  Chromothripsis and cancer: causes and consequences of chromosome shattering , 2012, Nature Reviews Cancer.

[5]  J. Brooks,et al.  Recurrent deletion of CHD1 in prostate cancer with relevance to cell invasiveness , 2012, Oncogene.

[6]  J. Lindberg,et al.  Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer , 2012, Oncogene.

[7]  A. Børresen-Dale,et al.  The Life History of 21 Breast Cancers , 2012, Cell.

[8]  M. Rubin,et al.  Oncogene-mediated alterations in chromatin conformation , 2012, Proceedings of the National Academy of Sciences.

[9]  L. Garraway,et al.  The genomic landscape of prostate cancer , 2012, Front. Endocrin..

[10]  A. Sivachenko,et al.  Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer , 2012, Nature Genetics.

[11]  A. McKenna,et al.  Absolute quantification of somatic DNA alterations in human cancer , 2012, Nature Biotechnology.

[12]  Benjamin J. Raphael,et al.  The Mutational Landscape of Lethal Castrate Resistant Prostate Cancer , 2016 .

[13]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[14]  David T. W. Jones,et al.  Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations , 2012, Cell.

[15]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[16]  S. De,et al.  DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes , 2011, Nature Biotechnology.

[17]  Stephen J. Salipante,et al.  Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers , 2011, Proceedings of the National Academy of Sciences.

[18]  Kristian Cibulskis,et al.  ContEst: estimating cross-contamination of human samples in next-generation sequencing data , 2011, Bioinform..

[19]  A. McKenna,et al.  The Mutational Landscape of Head and Neck Squamous Cell Carcinoma , 2011, Science.

[20]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[21]  Wei Yan,et al.  Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. , 2011, Cancer cell.

[22]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[23]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[24]  Gerald C. Chu,et al.  SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression , 2011, Nature.

[25]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[26]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[27]  Eric S. Lander,et al.  The genomic complexity of primary human prostate cancer , 2010, Nature.

[28]  Mark Gerstein,et al.  Bioinformatics Applications Note Gene Expression Rseqtools: a Modular Framework to Analyze Rna-seq Data Using Compact, Anonymized Data Summaries , 2022 .

[29]  María Martín,et al.  Ongoing and future developments at the Universal Protein Resource , 2010, Nucleic Acids Res..

[30]  Damian Szklarczyk,et al.  The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored , 2010, Nucleic Acids Res..

[31]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[32]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[33]  Dennis C. Friedrich,et al.  A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries , 2011, Genome Biology.

[34]  M. Shen,et al.  Molecular genetics of prostate cancer: new prospects for old challenges. , 2010, Genes & development.

[35]  Martin J. Aryee,et al.  Androgen-induced TOP2B mediated double strand breaks and prostate cancer gene rearrangements , 2010, Nature Genetics.

[36]  S. Dalton,et al.  Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. , 2010, Genome research.

[37]  Zhaohui S. Qin,et al.  An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. , 2010, Cancer cell.

[38]  Yuh-Hwa Wang,et al.  Secondary structure formation and DNA instability at fragile site FRA16B , 2010, Nucleic acids research.

[39]  Jie Zhang,et al.  Nuclear Receptor-Induced Chromosomal Proximity and DNA Breaks Underlie Specific Translocations in Cancer , 2009, Cell.

[40]  Michael T. McManus,et al.  Chd1 regulates open chromatin and pluripotency of embryonic stem cells , 2009, Nature.

[41]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[42]  M. Gerstein,et al.  Distinct genomic aberrations associated with ERG rearranged prostate cancer , 2009, Genes, chromosomes & cancer.

[43]  Akhilesh Pandey,et al.  Human Protein Reference Database and Human Proteinpedia as discovery tools for systems biology. , 2009, Methods in molecular biology.

[44]  S. Srivastava,et al.  TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation , 2008, Oncogene.

[45]  Obi L. Griffith,et al.  ORegAnno: an open-access community-driven resource for regulatory annotation , 2007, Nucleic Acids Res..

[46]  S. Dhanasekaran,et al.  Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer , 2007, Nature.

[47]  M. Rubin,et al.  TMPRSS2-ERG Fusion Prostate Cancer: An Early Molecular Event Associated With Invasion , 2006, The American journal of surgical pathology.

[48]  I. Jurisica,et al.  Unequal evolutionary conservation of human protein interactions in interologous networks , 2007, Genome Biology.

[49]  J. Tchinda,et al.  TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. , 2006, Cancer research.

[50]  J. Tchinda,et al.  Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. , 2006, Science.

[51]  Jason A. Koutcher,et al.  Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis , 2005, Nature.

[52]  O. Halvorsen,et al.  Combined loss of PTEN and p27 expression is associated with tumor cell proliferation by Ki-67 and increased risk of recurrent disease in localized prostate cancer. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[53]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[54]  R. Cardiff,et al.  Roles for Nkx3.1 in prostate development and cancer. , 1999, Genes & development.

[55]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[56]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[57]  L. Liotta,et al.  Allelic loss on chromosome 8p12-21 in microdissected prostatic intraepithelial neoplasia. , 1995, Cancer research.

[58]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[59]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[60]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[61]  S. Gould,et al.  Punctuated equilibria: the tempo and mode of evolution reconsidered , 1977, Paleobiology.