Iron disulfide for solar energy conversion
暂无分享,去创建一个
A. Ennaoui | N. Alonso‐Vante | H. Tributsch | S. Fiechter | C. Pettenkofer | C. Höpfner | K. Büker | M. Bronold
[1] T. Chattopadhyay,et al. Pyrite-type silicon diphosphide p-Si2: Structural parameters and valence electron density distribution , 1984 .
[2] Horst Weller,et al. Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS , 1990 .
[3] M. Grunze,et al. A review of halocarbon and halogen adsorption with particular reference to iron surfaces , 1982 .
[4] A. Bard,et al. Irradiation-induced absorption edge shifts in colloidal particles of FeS2 (pyrite) , 1989 .
[5] J. Griffith. On the stabilities of transition metal complexes—II Magnetic and thermodynamic properties , 1956 .
[6] Katsuaki Sato. Reflectivity Spectra and Optical Constants of Pyrites (FeS2, CoS2 and NiS2) between 0.2 and 4.4 eV , 1984 .
[7] S. Geller,et al. The crystal structure of RhSe2 , 1955 .
[8] P. Ramdohr,et al. Klockmann's Lehrbuch der Mineralogie , 1967 .
[9] H. Tributsch. Photoelectrochemical energy conversion involving transition metal d-states and intercalation of layer compounds , 1982 .
[10] A. Ennaoui,et al. Photoactive thin film semiconducting iron pyrite prepared by sulfurization of iron oxides , 1990 .
[11] W. Schaap,et al. Computing ligand field potentials and relative energies of d orbitals: A simple general approach , 1969 .
[12] W. Kautek,et al. Thin Pyrite Films Prepared by Sulphurization of Electrodeposited Iron Films , 1991 .
[13] Jan Augustynski,et al. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films , 1988 .
[14] R. D. Heyding,et al. Crystal structures of RuSe2, OsSe2, PtAs2, and α-NiAs2 , 1968 .
[15] C. F. V. Bruggen,et al. X-ray photoelectron spectra of 3d transition metal pyrites , 1980 .
[16] D. Schleich,et al. Iron pyrite and iron marcasite thin films prepared by low pressure chemical vapor deposition , 1991 .
[17] A. Ennaoui,et al. Chemical vapour transport of pyrite (FeS2) with halogen (Cl, Br, I) , 1986 .
[18] K. Osseo-asare,et al. Aspects of the Interfacial Electrochemistry of Semiconductor Pyrite ( FeS2 ) , 1988 .
[19] N. Hackerman,et al. Transport of Hydrogen Through Pyrite , 1983 .
[20] H. Lutz,et al. Infrared reflection spectra, directional dispersion of the phonon modes and dynamical effective charges of FeS2-Marcasite , 1985 .
[21] E. Peters,et al. Electrochemical reactions of pyrite in acid perchlorate solutions , 1968 .
[22] Müller,et al. Perturbed-angular-distribution measurements of the chemical shift of iron in the disulfides FeS2 (pyrite) and RuS2 (laurite). , 1990, Physical review. B, Condensed matter.
[23] A. Ennaoui,et al. Infrared spectroscopic and X-ray diffraction characterization of iron disulphide thin films prepared by metal-organic chemical vapour deposition , 1992 .
[24] C. Kloc,et al. Preparation and electrical transport properties of pyrite (FeS2) single crystals , 1992 .
[25] A. Ennaoui,et al. Light-induced electron transer and photoelectrocatalysis of chlorine evolution at FeS2 electrodes , 1986 .
[26] A. Echarri,et al. “n” type semiconductivity in natural single crystals of FeS2 (pyrite) , 1974 .
[27] S. Fiechter,et al. Electrical properties of natural and synthetic pyrite (FeS_2) crystals , 1990 .
[28] S. Miyahara,et al. Photoconductivity of Natural Pyrite (FeS 2 ) , 1971 .
[29] R. Lowson. Aqueous oxidation of pyrite by molecular oxygen , 1982 .
[30] S. Chander,et al. A Study of Pyrite/Solution Interface by Impedance Spectroscopy , 1990 .
[31] M. Birkholz,et al. Formation of semiconducting iron pyrite by spray pyrolysis , 1989 .
[32] H. Tributsch,et al. Semiconductor-electrochemical aspects of bacterial leaching. I. Oxidation of metal sulphides with large energy gaps: Semiconductor-electrochemical aspects of bacterial leaching , 1981 .
[33] Harris,et al. Electronic structure of RuS2. , 1985, Physical review. B, Condensed matter.
[34] Sutarno,et al. Chalcogenides of the transition elements. V. Crystal structures of the disulfides and ditellurides of ruthenium and osmium , 1967 .
[35] P. Toulmin,et al. A thermodynamic study of pyrite and pyrrhotite , 1964 .
[36] A. Shimizu,et al. Bonding Schemes for Compounds with the Pyrite, Marcasite, and Arsenopyrite Type Structures. , 1970 .
[37] Takashi Suzuki,et al. Photoconduction of Natural Pyrite FeS2 , 1980 .
[38] A. Ennaoui,et al. Iron sulphide solar cells , 1984 .
[39] R. J. Bouchard,et al. Transition metal pyrite dichalcogenides. High-pressure synthesis and correlation of properties , 1968 .
[40] I. Ferrer,et al. Characterization of FeS2 thin films prepared by thermal sulfidation of flash evaporated iron , 1991 .
[41] D. Eastman,et al. Localized and Bandlike Valence-Electron States in FeS 2 and NiS 2 , 1974 .
[42] H. Tributsch. REACTION OF EXCITED CHLOROPHYLL MOLECULES AT ELECTRODES AND IN PHOTOSYNTHESIS * , 1972 .
[43] W. Jaegermann,et al. Photoelectrochemistry of Highly Quantum Efficient Single‐Crystalline n ‐ FeS2 (Pyrite) , 1986 .
[44] Shik Shin,et al. Reflectance and UPS studies of band structures and final state interactions of low-spin pyrites , 1983 .
[45] David S. Ginley,et al. Prediction of Flatband Potentials at Semiconductor‐Electrolyte Interfaces from Atomic Electronegativities , 1978 .
[46] I. Lindau,et al. Atomic subshell photoionization cross sections and asymmetry parameters: 1 ⩽ Z ⩽ 103 , 1985 .
[47] P. Wachter,et al. Optical properties, phonons and electronic structure of iron pyrite (FeS2) , 1976 .
[48] Katsuaki Sato. Pyrite type compounds — With particular reference to optical characterization , 1985 .
[50] E. Yablonovitch. Statistical ray optics , 1982 .
[51] G. Willeke,et al. Thin pyrite (FeS2) films prepared by magnetron sputtering , 1992 .
[52] F. Harris,et al. Electronic-structure calculations, photoelectron spectra, optical spectra, and Mössbauer parameters for the pyrites M S 2 ( M = F e , C o , N i , C u , Z n ) , 1984 .
[53] R. Juza,et al. Beiträge zur systematischen Verwandtschaftslehre. 57. Das Zustandsdiagramm Pyrit, Magnetkies, Troilit und Schwefeldampf, beurteilt nach Schwefeldampfdrucken, Röntgenbildern, Dichten und magnetischen Messungen , 1932 .
[54] W. Jaegermann,et al. Thin photoactive FeS2 (pyrite) films , 1986 .
[55] M. A. Khan. Energy bands in pyrite-type crystals , 1976 .
[56] A. Abass,et al. Interband transitions of chemically deposited pyrite FeS2 films in the fundamental absorption region between 1 and 3.8 eV , 1986 .
[57] G. Sawatzky,et al. Electronic structure of some 3D transition-metal pyrites , 1987 .
[58] R. Shuey. Semiconducting ore minerals , 2012 .
[59] C. Heras,et al. About the band gap nature of FeS2 as determined from optical and photoelectrochemical measurements , 1990 .
[60] G. Calis,et al. THE ELECTRONIC-STRUCTURE OF PYRITES, PARTICULARLY CUS2 AND FE1-XCUXSE2 - AN XPS AND MOSSBAUER STUDY , 1988 .
[61] M. Lamache,et al. Etude electrochimique de la pyrite en milieu acide , 1983 .
[62] Animal supplier charged , 1991, Nature.
[63] Shik Shin,et al. Final State Interactions of Inner Core Absorption Excitation in Transition Metal Halides , 1982 .
[64] S. Fiechter,et al. Stoichiometry and impurity concentration in synthetically grown iron pyrite crystals and their constituents , 1989 .
[65] Hiroshi Watanabe,et al. X-Ray Photoelectron Spectra of Valence Electrons in FeS2, CoS2 and NiS2 , 1974 .
[66] A. Goldmann,et al. The transition from physisorbed to chemisorbed oxygen on silver films studied by photoemission , 1985 .
[67] M. Grätzel,et al. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.
[68] J. Fleming. Growth of FeS2 (pyrite) from Te melts , 1988 .
[69] J. Tossell,et al. Pyrite, marcasite, and arsenopyrite type minerals: Crystal chemical and structural principles , 1981 .
[70] D. Bullett,et al. Electronic structure of 3d pyrite- and marcasite-type sulphides , 1982 .
[71] W. Jaegermann,et al. The electronic band character of Ru dichalcogenides and its significance for the photoelectrolysis of water , 1984 .
[72] W. Jaegermann,et al. Surface Analysis Investigations on the Reaction of FeS2 with Alkali Metals , 1991 .
[73] A. Ennaoui,et al. Energetic characterization of the photoactive FeS2 (pyrite) interface , 1986 .
[74] N. Alonso‐Vante,et al. Interfacial behavior of hydrogen-treated sulphur deficient pyrite (FeS2−x) , 1988 .
[75] W. Jaegermann,et al. Site Specific Surface Interaction of Electron Donors and Acceptors on FeS2(100) Cleavage Planes , 1991 .
[76] Hartmann,et al. Sulfur deficiency in iron pyrite (FeS2-x) and its consequences for band-structure models. , 1991, Physical review. B, Condensed matter.
[77] H. Tributsch,et al. Semiconductor-electrochemical aspects of bacterial leaching. Part 2. Survey of rate-controlling sulphide properties: Aspects of bacterial leaching , 1981 .
[78] S. Ogawa. Magnetic properties of 3d transition‐metal dichalcogenides with the pyrite structure , 1979 .
[79] A. Ennaoui,et al. Photoactive Synthetic Polycrystalline Pyrite ( FeS2 ) , 1985 .
[80] A. Kjekshus,et al. On the Magnetic Properties of CoSe2, NiS2, and NiSe2. , 1969 .
[81] A. Abass,et al. Absorption edge measurements in chemically deposited pyrite FeS2 thin layers , 1987 .
[82] N. Alonso‐Vante,et al. Photovoltaic output limitation of n‐FeS2 (pyrite) Schottky barriers: A temperature‐dependent characterization , 1992 .
[83] M. Seehra,et al. Temperature dependence of the band gap of FeS 2 , 1979 .
[84] M. Birkholz,et al. Sputtering of thin pyrite films , 1992 .
[85] Lester,et al. Electronic structure, hyperfine interactions, and magnetic properties for iron octahedral sulfides. , 1988, Physical review. B, Condensed matter.
[86] S. Onari,et al. Infrared Lattice Vibrations and Dielectric Dispersion in Antiferromagnetic Semiconductor MnSe2 , 1979 .
[87] M. Birkholz,et al. The microstructure and stoichiometry of pyrite FeS_2−x , 1992 .
[88] Shik Shin,et al. Vacuum Ultraviolet Reflectance Spectra and Band Structures of Pyrites (FeS 2 , CoS 2 and NiS 2 ) and NiO Measured with Synchrotron Radiation , 1983 .
[89] R. J. Bouchard. The preparation of single crystals of FeS2, CoS2, and NiS2 pyrites by chlorine transport☆ , 1968 .
[90] M. Seehra,et al. Magnetic susceptibility of iron pyrite (FeS2) between 4.2 and 620 K , 1977 .
[91] A. Ennaoui,et al. Photoelectrochemical Energy Conversion Obtained with Ultrathin Organo‐Metallic‐Chemical‐Vapor‐Deposition Layer of FeS2 (Pyrite) on TiO2 , 1992 .
[92] A. Ennaoui,et al. Vapor phase epitaxial growth of FeS2 pyrite and evaluation of the carrier collection in liquid-junction solar cell , 1992 .
[93] J. Craig,et al. Mineral chemistry of metal sulfides , 1978 .
[94] S. Geller. The Crystal Structures of RhTe and RhTe2 , 1955 .
[95] S. Lalvani,et al. Electrochemical Oxidation of Pyrite Slurries , 1986 .
[96] P. Vaughan,et al. Cation stacking faults in magnesium germanate spinel , 1981 .
[97] M. Seehra,et al. Optical absorption in iron pyrite (Fe S 2 ) , 1978 .
[98] G. Frommeyer,et al. Preparation of pyrite films by plasma‐assisted sulfurization of thin iron films , 1990 .
[99] Hiromitsu Horita. Electrical Properties of Natural Pyrite between 1.3 and 700°K , 1971 .
[100] Roger G. Burns,et al. Mineralogical applications of crystal field theory , 1970 .
[101] J. Marinace. Some Electrical Properties of Natural Crystals of Iron Pyrite , 1954 .
[102] W. Jaegermann,et al. Photoelectrochemical reactions of FeS2 (pyrite) with H2O and reducing agents , 1983 .
[103] H. Tributsch,et al. Involvement of coordination chemistry during electron transfer in the stabilization of the pyrite (FeS2)photoanode , 1988 .
[104] I. Barin,et al. Thermochemical properties of inorganic substances , 1973 .
[105] N. Elliott,et al. Interatomic Distances in Cobalt Diselenide , 1940 .
[106] K. Osseo-asare,et al. Electrodeposition of H+ on Oxide Layers at Pyrite ( FeS2 ) Surfaces , 1988 .
[107] J. Wilson,et al. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .