Carbon nanotube transistors: an evaluation

A simple, non-equilibrium model is used to evaluate the likely DC performance of carbon nanotube field-effect transistors. It is shown that, by appropriate work function engineering of the source, drain and gate contacts to the device, the following desirable properties should be realizable: a sub-threshold slope close to the thermionic limit; a conductance close to the interfacial limit; an ON/OFF ratio of around 103; ON current and transconductance close to the low-quantum-capacitance limit.

[1]  Stefan Heinze,et al.  Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors , 2003 .

[2]  Electrostatics of nanowire transistors , 2003 .

[3]  J. C. Tsang,et al.  Electrically Induced Optical Emission from a Carbon Nanotube FET , 2003, Science.

[4]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[5]  P. Avouris,et al.  Nanotubes for electronics. , 2000, Scientific American.

[6]  David L. Pulfrey,et al.  Bipolar conduction and drain-induced barrier thinning in carbon nanotube FETs , 2003 .

[7]  Miyamoto,et al.  Ionic cohesion and electron doping of thin carbon tubules with alkali atoms. , 1995, Physical review letters.

[8]  M. Radosavljevic,et al.  Drain voltage scaling in carbon nanotube transistors , 2003, cond-mat/0305570.

[9]  C. Quate,et al.  Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes , 1999 .

[10]  Mark S. Lundstrom,et al.  Theory of ballistic nanotransistors , 2003 .

[11]  R. Smalley,et al.  Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization , 2003, Science.

[12]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[13]  Supriyo Datta,et al.  Metal–insulator–semiconductor electrostatics of carbon nanotubes , 2002 .

[14]  Erik H. Anderson,et al.  Chemical profiling of single nanotubes: Intramolecular p–n–p junctions and on-tube single-electron transistors , 2002 .

[15]  Paul L. McEuen,et al.  High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .

[16]  Unexpected Scaling of the Performance of Carbon Nanotube Transistors , 2003, cond-mat/0302175.

[17]  Jeong-O Lee,et al.  Ultrahigh-density nanotransistors by using selectively grown vertical carbon nanotubes , 2001 .

[18]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[19]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[20]  David L. Pulfrey,et al.  Towards a compact model for Schottky-barrier nanotube FETs , 2002, 2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601).

[21]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[22]  Ant Ural,et al.  Electric-field-aligned growth of single-walled carbon nanotubes on surfaces , 2002 .

[23]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[24]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[25]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[26]  Leonard,et al.  Role of fermi-level pinning in nanotube schottky diodes , 2000, Physical review letters.

[27]  H. Wong,et al.  Carbon nanotube field effect transistors for logic applications , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[28]  Mark S. Lundstrom,et al.  Electrostatics of nanowire transistors , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[29]  Jing Guo,et al.  Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors , 2002, Digest. International Electron Devices Meeting,.

[30]  S. Datta,et al.  Performance projections for ballistic carbon nanotube field-effect transistors , 2002 .

[31]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[32]  David L. Pulfrey,et al.  Electrostatics of coaxial Schottky-barrier nanotube field-effect transistors , 2003 .

[33]  S. Datta,et al.  Predicted Performance Advantages of Carbon Nanotube Transistors with Doped Nanotubes as Source/Drain , 2003, cond-mat/0309039.

[34]  L. C. Castro,et al.  Electrostatics of partially gated carbon nanotube FETs , 2004, IEEE Transactions on Nanotechnology.