Altered composition and phenotype of mucosal-associated invariant T cells in early untreated rheumatoid arthritis

[1]  I. Konstantinov,et al.  Human blood MAIT cell subsets defined using MR1 tetramers , 2018, Immunology and cell biology.

[2]  P. Klenerman,et al.  Shared and Distinct Phenotypes and Functions of Human CD161++ Vα7.2+ T Cell Subsets , 2017, Front. Immunol..

[3]  Y. Takasaki,et al.  Activation status of mucosal-associated invariant T cells reflects disease activity and pathology of systemic lupus erythematosus , 2017, Arthritis Research & Therapy.

[4]  J. McCluskey,et al.  Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells , 2017, Nature Immunology.

[5]  M. Kusaoi,et al.  Involvement of Mucosal-associated Invariant T cells in Ankylosing Spondylitis , 2016, The Journal of Rheumatology.

[6]  T. Wiele,et al.  How the microbiota shapes rheumatic diseases , 2016, Nature Reviews Rheumatology.

[7]  Y. Baglaenko,et al.  IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis , 2016, Annals of the rheumatic diseases.

[8]  H. Wakao,et al.  Mucosal-Associated Invariant T Cell Is a Potential Marker to Distinguish Fibromyalgia Syndrome from Arthritis , 2015, PloS one.

[9]  Shin-Seok Lee,et al.  Mucosal-Associated Invariant T Cell Deficiency in Systemic Lupus Erythematosus , 2014, The Journal of Immunology.

[10]  P. Klenerman,et al.  MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets , 2014, Mucosal Immunology.

[11]  P. Klenerman,et al.  Mucosal-Associated Invariant T-Cells: New Players in Anti-Bacterial Immunity , 2014, Front. Immunol..

[12]  D. Sinderen,et al.  T-cell activation by transitory neo-antigens derived from distinct microbial pathways , 2014, Nature.

[13]  James McCluskey,et al.  Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells , 2013, The Journal of experimental medicine.

[14]  Désirée van der Heijde,et al.  Percentage of patients with spondyloarthritis in patients referred because of chronic back pain and performance of classification criteria: experience from the Spondyloarthritis Caught Early (SPACE) cohort. , 2013, Rheumatology.

[15]  Jeffrey N. Martin,et al.  Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. , 2013, Blood.

[16]  B. Gazzard,et al.  Early and nonreversible decrease of CD161++ /MAIT cells in HIV infection. , 2013, Blood.

[17]  T. Dong,et al.  Induction of Lectin-like Transcript 1 (LLT1) Protein Cell Surface Expression by Pathogens and Interferon-γ Contributes to Modulate Immune Responses* , 2011, The Journal of Biological Chemistry.

[18]  O. Lantz,et al.  Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. , 2011, Blood.

[19]  F. Bihl,et al.  Cutting Edge: Lectin-Like Transcript 1 Is a Ligand for the CD161 Receptor1 , 2005, The Journal of Immunology.

[20]  M. Reijnierse,et al.  Percentage of patients with spondyloarthritis in patients referred because of chronic back pain and performance of classification criteria: experience from the Spondyloarthritis Caught Early (SPACE) cohort. , 2013, Rheumatology.

[21]  Rachel Knevel,et al.  Predicting arthritis outcomes--what can be learned from the Leiden Early Arthritis Clinic? , 2011, Rheumatology.