Subspace tracking using a constrained hyperbolic URV decomposition

The class of Schur subspace estimators provides a parametrization of all minimal-rank matrix approximants that lie within a specified distance of a given matrix, and in particular gives expressions for the column spans of these approximants. In this paper, we derive an updating algorithm for an interesting member of the class, making use of a constrained hyperbolic URV-like decomposition.

[1]  Allan O. Steinhardt,et al.  The hyberbolic singular value decomposition and applications , 1990, Fifth ASSP Workshop on Spectrum Estimation and Modeling.

[2]  G. W. Stewart,et al.  An updating algorithm for subspace tracking , 1992, IEEE Trans. Signal Process..

[3]  Ilse C. F. Ipsen,et al.  On Rank-Revealing Factorisations , 1994, SIAM J. Matrix Anal. Appl..

[4]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[5]  Jürgen Götze,et al.  On-line subspace estimation using a Schur-type method , 1996, IEEE Trans. Signal Process..

[6]  Marc Moonen,et al.  On the QR algorithm and updating the SVD and the URV decomposition in parallel , 1993 .

[7]  A. Bunse-Gerstner An analysis of the HR algorithm for computing the eigenvalues of a matrix , 1981 .

[8]  Bin Yang,et al.  Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..

[9]  A. Bojanczyk,et al.  The hyperbolic singular value decomposition and applications , 1989, Proceedings of the 32nd Midwest Symposium on Circuits and Systems,.

[10]  Alle-Jan van der Veen,et al.  A Schur Method for Low-Rank Matrix Approximation , 1996, SIAM J. Matrix Anal. Appl..