Application of Deep Learning to Develop a Safety Confirmation System for the Elderly in a Nursing Home

[1]  M. Daniels,et al.  Effects of an Intervention to Increase Bed Alarm Use to Prevent Falls in Hospitalized Patients , 2012, Annals of Internal Medicine.

[2]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[3]  Hirokazu Madokoro,et al.  加速度センサ内蔵枕を用いた機械学習に基づく離床行動予測;加速度センサ内蔵枕を用いた機械学習に基づく離床行動予測;Prediction of Bed-leaving Behaviors Using Accelerometer-embedded Pillow Based on Machine Learning , 2013 .

[4]  M. Schoen,et al.  False Bed Alarms: A Teachable Moment. , 2016, JAMA internal medicine.

[5]  Yoshikazu Mori,et al.  Monitoring System for Elderly People Using Passive RFID Tags , 2014, J. Robotics Mechatronics.

[6]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[7]  Keiki Takadama,et al.  Toward the Next-Generation Sleep Monitoring / Evaluation by Human Body Vibration Analysis , 2016, AAAI Spring Symposia.

[8]  Does sleep really shorten when we get older? , 2014 .

[9]  Kouhei Akazawa,et al.  Analysis of incidents occurring in long-term care insurance facilities , 2013 .

[10]  D C Ranasinghe,et al.  Low cost and batteryless sensor-enabled radio frequency identification tag based approaches to identify patient bed entry and exit posture transitions. , 2014, Gait & posture.

[11]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[12]  Kanya Tanaka,et al.  Safety Confirmation System Using Mat-Sensor and Power Line Communications for Elderly Person , 2007, J. Robotics Mechatronics.