Tempered stable process, first passage time, and path-dependent option pricing

In this paper, we will discuss an approximation of the characteristic function of the first passage time for a Lévy process using the martingale approach. The characteristic function of the first passage time of the tempered stable process is provided explicitly or by an indirect numerical method. This will be applied to the perpetual American option pricing and the barrier option pricing. For the numerical illustration, we calibrate risk neutral process parameters using S&P 500 index option prices and apply those parameters to find prices of perpetual American option and barrier option.

[1]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[3]  N. Shephard,et al.  Normal Modified Stable Processes , 2001 .

[4]  L. C. G. Rogers Evaluating first-passage probabilities for spectrally one-sided Lévy processes , 2000, Journal of Applied Probability.

[5]  Svetlana Boyarchenko,et al.  OPTION PRICING FOR TRUNCATED LÉVY PROCESSES , 2000 .

[6]  Young Shin Kim,et al.  The relative entropy in CGMY processes and its applications to finance , 2007, Math. Methods Oper. Res..

[7]  I. Sengupta,et al.  Barrier Option Under Lévy Model: A PIDE and Mellin Transform Approach , 2014 .

[8]  Wim Schoutens,et al.  The beta-Meixner model , 2012, J. Comput. Appl. Math..

[9]  Hans U. Gerber,et al.  Martingale Approach to Pricing Perpetual American Options , 1994, ASTIN Bulletin.

[10]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[11]  Frank J. Fabozzi,et al.  Financial Models with Levy Processes and Volatility Clustering , 2011 .

[12]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Sergei Levendorskii,et al.  Feller processes of normal inverse Gaussian type , 2001 .

[14]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[15]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[16]  Svetlana Boyarchenko,et al.  Perpetual American Options Under L[e-acute]vy Processes , 2001, SIAM J. Control. Optim..

[17]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[18]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[19]  S. Mittnik,et al.  Quanto option pricing in the presence of fat tails and asymmetric dependence , 2015 .

[20]  Sung IK Kim,et al.  Tempered stable structural model in pricing credit spread and credit default swap , 2018 .

[21]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[22]  S. Levendorskii,et al.  Barrier options and touch- and-out options under regular Lévy processes of exponential type , 2002 .

[23]  T. Hurd,et al.  On the First Passage time for Brownian Motion Subordinated by a Lévy Process , 2008, Journal of Applied Probability.