SPARQL Query Recommendation by Example: Assessing the Impact of Structural Analysis on Star-Shaped Queries

One of the existing query recommendation strategies for unknown datasets is “by example”, i.e. based on a query that the user already knows how to formulate on another dataset within a similar domain. In this paper we measure what contribution a structural analysis of the query and the datasets can bring to a recommendation strategy, to go alongside approaches that provide a semantic analysis. Here we concentrate on the case of star-shaped SPARQL queries over RDF datasets. The illustrated strategy performs a least general generalization on the given query, computes the specializations of it that are satisfiable by the target dataset, and organizes them into a graph. It then visits the graph to recommend first the reformulated queries that reflect the original query as closely as possible. This approach does not rely upon a semantic mapping between the two datasets. An implementation as part of the SQUIRE query recommendation library is discussed. 2012 ACM Subject Classification Information systems → Semantic web description languages