Representation of Geometric Borders in the Entorhinal Cortex

We report the existence of an entorhinal cell type that fires when an animal is close to the borders of the proximal environment. The orientation-specific edge-apposing activity of these “border cells” is maintained when the environment is stretched and during testing in enclosures of different size and shape in different rooms. Border cells are relatively sparse, making up less than 10% of the local cell population, but can be found in all layers of the medial entorhinal cortex as well as the adjacent parasubiculum, often intermingled with head-direction cells and grid cells. Border cells may be instrumental in planning trajectories and anchoring grid fields and place fields to a geometric reference frame.

[1]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[2]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[3]  C. Geary Leukemia , 1984, British Journal of Cancer.

[4]  L Davies,et al.  Bone marrow transplant. , 1985, Nursing times.

[5]  G. Karmos,et al.  Electrical activity of the archicortex , 1986 .

[6]  Margaret N. Shouse Electrical Activity of Archicortex , 1986 .

[7]  P. Sperryn,et al.  Blood. , 1989, British journal of sports medicine.

[8]  M. Abe,et al.  Cytokine , 2020, Bone Marrow Transplantation.

[9]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  E. Bostock,et al.  Experience‐dependent modifications of hippocampal place cell firing , 1991, Hippocampus.

[11]  永福 智志 The Organization of Learning , 2005, Journal of Cognitive Neuroscience.

[12]  M. Gerretsen,et al.  Br. J. Cancer , 1993 .

[13]  J. Ashby References and Notes , 1999 .

[14]  J. O’Keefe,et al.  Modeling place fields in terms of the cortical inputs to the hippocampus , 2000, Hippocampus.

[15]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[16]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[17]  B. McNaughton,et al.  Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles , 2005, Science.

[18]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[19]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[20]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[21]  J. Knierim,et al.  Head Direction Cell Representations Maintain Internal Coherence during Conflicting Proximal and Distal Cue Rotations: Comparison with Hippocampal Place Cells , 2006, The Journal of Neuroscience.

[22]  D. Nitz Tracking Route Progression in the Posterior Parietal Cortex , 2006, Neuron.

[23]  K. Jeffery,et al.  The Boundary Vector Cell Model of Place Cell Firing and Spatial Memory , 2006, Reviews in the neurosciences.

[24]  J. Taube The head direction signal: origins and sensory-motor integration. , 2007, Annual review of neuroscience.

[25]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[26]  A. Treves,et al.  Hippocampal remapping and grid realignment in entorhinal cortex , 2007, Nature.

[27]  M. Moser,et al.  Understanding memory through hippocampal remapping , 2008, Trends in Neurosciences.

[28]  Jonathan R. Whitlock,et al.  Navigating from hippocampus to parietal cortex , 2008, Proceedings of the National Academy of Sciences.

[29]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[30]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.