Error Analysis of a Fractional Time-Stepping Technique for Incompressible Flows with Variable Density
暂无分享,去创建一个
[1] P. Colella,et al. A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .
[2] Francisco Guillén-González,et al. Unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion , 2008, Math. Comput..
[3] R. Rannacher,et al. Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .
[4] Jean-Luc Guermond,et al. On the approximation of the unsteady Navier–Stokes equations by finite element projection methods , 1998, Numerische Mathematik.
[5] Jean-Luc Guermond,et al. Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..
[6] J. Bell,et al. A Second-Order Projection Method for Variable- Density Flows* , 1992 .
[7] A. Prohl. Projection and quasi-compressibility methods for solving the incompressible navier-stokes equations , 1997 .
[8] Abner J. Salgado,et al. A fractional step method based on a pressure Poisson equation for incompressible flows with variable density , 2008 .
[9] Claude Bardos,et al. Mathematical Topics in Fluid Mechanics, Volume 1, Incompressible Models , 1998 .
[10] Abner J. Salgado,et al. A splitting method for incompressible flows with variable density based on a pressure Poisson equation , 2009, J. Comput. Phys..
[11] P. Hansbo,et al. Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .
[12] Navier-Stokes equations,et al. ON ERROR ESTIMATES OF PROJECTION METHODS FOR , 1992 .
[13] Jean-Luc Guermond,et al. Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale , 1999 .
[14] Mary Fanett. A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .
[15] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[16] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[17] Jie Shen,et al. On the error estimates for the rotational pressure-correction projection methods , 2003, Math. Comput..
[18] Claes Johnson,et al. Finite element methods for linear hyperbolic problems , 1984 .
[19] L. Quartapelle,et al. A projection FEM for variable density incompressible flows , 2000 .
[20] Jean-Luc Guermond. Un résultat de convergence d'ordre deux pour l'approximation des équations de Navier-Stokes par projection incrémentale , 1997 .
[21] Jie Shen,et al. An overview of projection methods for incompressible flows , 2006 .
[22] Noel Walkington,et al. Convergence of the Discontinuous Galerkin Method for Discontinuous Solutions , 2004, SIAM J. Numer. Anal..
[23] Jean-Luc Guermond,et al. Entropy-based nonlinear viscosity for Fourier approximations of conservation laws , 2008 .
[24] Rolf Rannacher,et al. Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .
[25] M. Wheeler. A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .
[26] A. Chorin. Numerical Solution of the Navier-Stokes Equations* , 1989 .
[27] Jie Shen,et al. A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..
[28] Jie Shen,et al. Gauge-Uzawa methods for incompressible flows with variable density , 2007, J. Comput. Phys..
[29] W. Bangerth,et al. deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.
[30] Frans N. van de Vosse,et al. An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .
[31] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .
[32] T. F. Russell,et al. NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .
[33] Chun Liu,et al. Convergence of Numerical Approximations of the Incompressible Navier-Stokes Equations with Variable Density and Viscosity , 2007, SIAM J. Numer. Anal..
[34] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[35] Jean-Luc Guermond,et al. Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers , 2006 .
[36] Lamberto Cattabriga,et al. Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .