Error Analysis of a Fractional Time-Stepping Technique for Incompressible Flows with Variable Density

In this paper we analyze the convergence properties of a new fractional time-stepping technique for the solution of the variable density incompressible Navier-Stokes equations. The main feature of this method is that, contrary to other existing algorithms, the pressure is determined by just solving one Poisson equation per time step. First-order error estimates are proved, and stability of a formally second-order variant of the method is established.

[1]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[2]  Francisco Guillén-González,et al.  Unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion , 2008, Math. Comput..

[3]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[4]  Jean-Luc Guermond,et al.  On the approximation of the unsteady Navier–Stokes equations by finite element projection methods , 1998, Numerische Mathematik.

[5]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[6]  J. Bell,et al.  A Second-Order Projection Method for Variable- Density Flows* , 1992 .

[7]  A. Prohl Projection and quasi-compressibility methods for solving the incompressible navier-stokes equations , 1997 .

[8]  Abner J. Salgado,et al.  A fractional step method based on a pressure Poisson equation for incompressible flows with variable density , 2008 .

[9]  Claude Bardos,et al.  Mathematical Topics in Fluid Mechanics, Volume 1, Incompressible Models , 1998 .

[10]  Abner J. Salgado,et al.  A splitting method for incompressible flows with variable density based on a pressure Poisson equation , 2009, J. Comput. Phys..

[11]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[12]  Navier-Stokes equations,et al.  ON ERROR ESTIMATES OF PROJECTION METHODS FOR , 1992 .

[13]  Jean-Luc Guermond,et al.  Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale , 1999 .

[14]  Mary Fanett A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .

[15]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[16]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[17]  Jie Shen,et al.  On the error estimates for the rotational pressure-correction projection methods , 2003, Math. Comput..

[18]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[19]  L. Quartapelle,et al.  A projection FEM for variable density incompressible flows , 2000 .

[20]  Jean-Luc Guermond Un résultat de convergence d'ordre deux pour l'approximation des équations de Navier-Stokes par projection incrémentale , 1997 .

[21]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[22]  Noel Walkington,et al.  Convergence of the Discontinuous Galerkin Method for Discontinuous Solutions , 2004, SIAM J. Numer. Anal..

[23]  Jean-Luc Guermond,et al.  Entropy-based nonlinear viscosity for Fourier approximations of conservation laws , 2008 .

[24]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[25]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[26]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[27]  Jie Shen,et al.  A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..

[28]  Jie Shen,et al.  Gauge-Uzawa methods for incompressible flows with variable density , 2007, J. Comput. Phys..

[29]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[30]  Frans N. van de Vosse,et al.  An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .

[31]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[32]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[33]  Chun Liu,et al.  Convergence of Numerical Approximations of the Incompressible Navier-Stokes Equations with Variable Density and Viscosity , 2007, SIAM J. Numer. Anal..

[34]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[35]  Jean-Luc Guermond,et al.  Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers , 2006 .

[36]  Lamberto Cattabriga,et al.  Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .