Finite-difference time-domain analysis of cholesteric blue phase II using the Landau-de Gennes tensor order parameter model.

We numerically calculated the photonic band structure of a cholesteric blue phase II (BPII) liquid crystal using two models, the tensor order parameter model and the double-twist cylinder (DTC) model. The tensor order parameter model was derived numerically from the Landau-de Gennes theory, whereas the DTC model simply assumed a three-dimensional stack of ordered cylinders. The two models yielded similar photonic band structures; however, the polarization dependence of the transmission spectrum through the (100) direction in BPII was different. The results from the tensor order parameter model gave a better qualitative agreement with experiments on the transmission spectrum. This demonstrates the importance of a precise orientation model in the analysis of the optical properties of cholesteric blue phases.

[1]  Jun-ichi Fukuda Stabilization of a blue phase by a guest component: an approach based on a Landau-de Gennes theory. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  C. Bohley,et al.  Polarization of light reflected by cholesteric blue phases , 2004 .

[3]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[4]  T. Nagamura,et al.  Large Electro‐optic Kerr Effect in Polymer‐Stabilized Liquid‐Crystalline Blue Phases , 2005 .

[5]  Yi-Hsin Lin,et al.  Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals , 2010 .

[6]  Miha Ravnik,et al.  Mesoscopic modelling of colloids in chiral nematics. , 2010, Faraday discussions.

[7]  Jun-ichi Fukuda Stability of cholesteric blue phases in the presence of a guest component. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Hiroyuki Yoshida,et al.  Finite-Difference Time-Domain Analysis of Polarization-Dependent Transmission in Cholesteric Blue Phase II , 2010 .

[9]  R. Hornreich,et al.  Landau theory of cholesteric blue phases , 1983 .

[10]  Masayuki Yokota,et al.  Polymer-stabilized liquid crystal blue phases , 2002, Nature materials.

[11]  Hiroyuki Yoshida,et al.  Nanoparticle-Stabilized Cholesteric Blue Phases , 2009 .

[12]  Shin‐Tson Wu,et al.  Electro-optics of polymer-stabilized blue phase liquid crystal displays , 2009 .

[13]  Peter Palffy-Muhoray,et al.  Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II , 2002, Nature materials.

[14]  D. Johnson,et al.  Structure and Properties of the Cholesteric Blue Phases , 1980 .

[15]  N. David Mermin,et al.  Crystalline liquids: the blue phases , 1989 .

[16]  S. S. Choi,et al.  Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. , 2012, Nature materials.

[17]  S. Meiboom,et al.  Lattice of disclinations: The structure of the blue phases of cholesteric liquid crystals , 1983 .

[18]  Hiroshi Yokoyama,et al.  Simulation of cholesteric blue phases using a Landau-de Gennes theory: effect of an applied electric field. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Sommers,et al.  Photonic bands in simple and body-centered-cubic cholesteric blue phases. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  P. Crooker,et al.  Polarization and pitch dependence of cholesteric blue-phase structures , 1981 .

[21]  Stanisław Urban,et al.  Nematic order parameter as determined from dielectric relaxation data and other methods , 2003 .

[22]  Miha Ravnik,et al.  Three-dimensional colloidal crystals in liquid crystalline blue phases , 2011, Proceedings of the National Academy of Sciences.