The magnetic, spectroscopic, and photometric variability of the Wolf–Rayet star WR 55

Studies of magnetic fields in the most evolved massive stars, the Wolf–Rayet stars, are of special importance because they are progenitors of certain types of supernovae. The first detection of a magnetic field of the order of a few hundred gauss in the WN7 star WR 55, based on a few FORS2 low-resolution spectropolarimetric observations, was reported in 2020. In this work, we present new FORS2 observations allowing us to detect magnetic and spectroscopic variability with a period of 11.90 h. No significant frequencies were detected in TESS and ASAS-SN photometric observations. Importantly, magnetic field detections are achieved currently only in two Wolf–Rayet stars, WR 6 and WR 55, both showing the presence of corotating interacting regions.

[1]  S. Hubrig,et al.  Are magnetic fields universal in O-type multiple systems? , 2023, 2303.14791.

[2]  T. Van Reeth,et al.  Multiple variability time-scales of the early nitrogen-rich Wolf-Rayet star WR 7 , 2022, Monthly notices of the Royal Astronomical Society.

[3]  G. Wade,et al.  A Study of the Stochastic Photometric Variability in the Winds of Galactic Wolf–Rayet Stars , 2022, The Astrophysical Journal.

[4]  R. Kotak,et al.  Gaia Early Data Release 3 , 2021, Astronomy & Astrophysics.

[5]  E. Gosset,et al.  Red noise and pulsations in evolved massive stars , 2021, Monthly Notices of the Royal Astronomical Society.

[6]  A. Cikota,et al.  The search for magnetic fields in two Wolf–Rayet stars and the discovery of a variable magnetic field in WR 55 , 2020, 2010.00983.

[7]  N. Langer,et al.  Precollapse Properties of Superluminous Supernovae and Long Gamma-Ray Burst Progenitor Models , 2020, The Astrophysical Journal.

[8]  R. Ignace,et al.  Radio variability from corotating interaction regions threading Wolf–Rayet winds , 2020, Monthly Notices of the Royal Astronomical Society.

[9]  C. Aerts,et al.  Low-frequency gravity waves in blue supergiants revealed by high-precision space photometry , 2019, Nature Astronomy.

[10]  A. Sander,et al.  The Galactic WN stars revisited , 2019, Astronomy & Astrophysics.

[11]  V. Prat,et al.  Three-dimensional Simulations of Massive Stars. I. Wave Generation and Propagation , 2019, The Astrophysical Journal.

[12]  C. Aerts,et al.  Photometric detection of internal gravity waves in upper main-sequence stars , 2018, Astronomy & Astrophysics.

[13]  C. Neiner,et al.  The pulsating magnetosphere of the extremely slowly rotating magnetic β Cep star ξ1 CMa , 2017, 1706.08820.

[14]  Astrophysics,et al.  The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.

[15]  M. Schoeller,et al.  B fields in OB stars (BOB): Concluding the FORS 2 observing campaign , 2016, 1611.04502.

[16]  C. Neiner,et al.  The MiMeS survey of Magnetism in Massive Stars : magnetic analysis of the O-type stars , 2016, 1610.07895.

[17]  A. Cikota,et al.  Linear spectropolarimetry of polarimetric standard stars with VLT/FORS2 , 2016, 1610.00722.

[18]  Peter Tenenbaum,et al.  The TESS science processing operations center , 2016, Astronomical Telescopes + Instrumentation.

[19]  M. Schoeller,et al.  Searching for a magnetic field in Wolf–Rayet stars using FORS 2 spectropolarimetry , 2016, 1603.01441.

[20]  U. Toronto,et al.  MOST detects corotating bright spots on the mid-O-type giant ξ Persei , 2014, 1403.7843.

[21]  Michael B. Miller Linear Regression Analysis , 2013 .

[22]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[23]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[24]  M. Schoeller,et al.  Exploring the origin of magnetic fields in massive stars: II. New magnetic field measurements in cluster and field stars , 2013, 1301.4376.

[25]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[26]  J. Zorec,et al.  A 10-h period revealed in optical spectra of the highly variable WN8 Wolf-Rayet star WR 123 , 2011, 1104.5182.

[27]  N. Langer,et al.  Sub-surface convection zones in hot massive stars and their observable consequences , 2009, 0903.2049.

[28]  G. Gräfener,et al.  The Galactic WN stars. Spectral analyses with line-blanketed model atmospheres versus stellar evolut , 2006, astro-ph/0608078.

[29]  M. Schoeller,et al.  New measurements of magnetic fields of roAp stars with FORS 1 at the VLT , 2003, astro-ph/0309560.

[30]  M. Schoeller,et al.  Measurements of magnetic fields over the pulsation cycle in six roAp stars with FORS 1 at the VLT , 2003, astro-ph/0309561.

[31]  D. Mullan Corotating interaction regions in stellar winds , 1984 .

[32]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .