Ferritic-martensitic steels for fission and fusion applications

Abstract Compared to austenitic stainless steels, largely employed in the early fission reactors, high chromium Ferritic/Martenstic (FM) steels, developed since the first half of the 20th century for fossil-fuel power-plants, have a number of advantageous properties among which lower thermal expansion, higher thermal conductivity and better void swelling resistance. At the beginning of the 1970s, FM steels found their first nuclear application as wrapper and fuel cladding materials in sodium-cooled fast reactors. They are now the reference materials for in-vessel components of future fusion reactors, and are considered for in-pile and out-of-pile applications in Generation IV reactors as well as for various other nuclear systems. In this paper, after an introductory historical overview, the challenges associated with the use of FM steels in advanced reactors are addressed, including fabrication, joining and codification issues. The long term evolution of mechanical properties such as the creep and creep-fatigue behaviors is discussed and the degradation phenomena occurring in aggressive environments (lead alloys, high temperature gases, super-critical water and CO2, molten salts) are detailed. The paper also provides a brief overview of the radiation effects in FM steels. The influence of the key radiation parameters e.g. temperature, dose and dose rate on the microstructure and mechanical properties are discussed. The need to better understand the synergistic effects of displacement damage and helium produced by transmutation in fusion conditions is highlighted.

[1]  R. Klueh,et al.  Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening , 2008 .

[2]  S. Rogozhkin,et al.  Atom probe study of radiation induced precipitates in Eurofer97 Ferritic-Martensitic steel irradiated in BOR-60 reactor , 2013, Inorganic Materials: Applied Research.

[3]  M. Rieth,et al.  The effect of tantalum on the mechanical properties of a 9Cr 2W 0.25V 0.07Ta 0.1C steel , 1999 .

[4]  N. Baluc,et al.  The mechanical properties and microstructure of the OPTIMAX series of low activation ferritic–martensitic steels , 2000 .

[5]  Kenneth William Burn,et al.  Status and trend of core design activities for heavy metal cooled accelerator driven system , 2006 .

[6]  Mike Garrett,et al.  TERRAPOWER, LLC TRAVELING WAVE REACTOR DEVELOPMENT PROGRAM OVERVIEW , 2013 .

[7]  Gaurav Gupta,et al.  Corrosion and stress corrosion cracking in supercritical water , 2007 .

[8]  A. Kohyama,et al.  Creep behavior of reduced activation ferritic/martensitic steels irradiated at 573 and 773 K up to 5 dpa , 2007 .

[9]  F. Balbaud-Célérier,et al.  Effect of oxygen on liquid sodium embrittlement of T91 martensitic steel , 2013 .

[10]  J. Aktaa,et al.  Investigation of microstructure defects in EUROFER97 under He⁺/Fe³⁺ dual ion beam irradiation , 2018 .

[11]  B. Raj,et al.  Measurement of transformation temperatures and specific heat capacity of tungsten added reduced activation ferritic–martensitic steel , 2009 .

[12]  J. Aktaa,et al.  Review and critical assessment of dislocation loop analyses on EUROFER 97 , 2018 .

[13]  Céline Cabet,et al.  Corrosion of high temperature metallic materials in VHTR , 2009 .

[14]  Steven J. Zinkle,et al.  Technical issues of reduced activation ferritic/martensitic steels for fabrication of ITER test blanket modules , 2008 .

[15]  K. Suzuki,et al.  Effect of tempering temperature on Z-phase formation and creep strength in 9Cr–1Mo–V–Nb–N steel , 2008 .

[16]  M. Tamura,et al.  Mechanical properties of welded joints of the reduced-activation ferritic steel: 8% Cr-2% W-0.2% V-0.04% Ta-Fe , 1991 .

[17]  Ronald L. Klueh,et al.  Microstructural analysis of neutron-irradiated martensitic steels☆ , 1996 .

[18]  G. Was,et al.  The mechanism of radiation-induced segregation in ferritic–martensitic alloys , 2014 .

[19]  John C. Lippold,et al.  Transformation and tempering behavior of 12Cr-1Mo-0.3V martensitic stainless steel weldments , 1981 .

[20]  Y. Yano,et al.  Tensile and transient burst properties of advanced ferritic/martensitic steel claddings after neutron irradiation , 2007 .

[21]  R. Chaouadi,et al.  Effect of irradiation-induced plastic flow localization on ductile crack resistance behavior of a 9%Cr tempered martensitic steel , 2008 .

[22]  E. Diegele,et al.  Current status and recent research achievements in ferritic/martensitic steels , 2014 .

[23]  M. Abe,et al.  Evaluation of magnetic fields due to the ferromagnetic vacuum vessel and their influence on plasma discharge in tokamak devices , 1999 .

[24]  Ivan Tournié,et al.  Macroscopic results of long-term creep on a modified 9Cr–1Mo steel (T91) , 2009 .

[25]  Takanori Hirose,et al.  Radiological assessment of the limits and potential of reduced activation ferritic/martensitic steels , 2014 .

[26]  A. Almazouzi,et al.  Assessment of the lifetime of the beam window of MEGAPIE target liquid metal container , 2006 .

[27]  F. Mann,et al.  Reduced activation calculations for the STARFIRE first wall , 1984 .

[28]  T. Kondo,et al.  Accumulation of engineering data for practical use of reduced activation ferritic steel: 8%Cr2%W0.2%V0.04%TaFe , 1992 .

[29]  B. A. Vasiliev,et al.  Structural materials for fusion power reactors—the RF R&D activities , 2007 .

[30]  H.-C. Schneider,et al.  Tensile behavior of RAFM alloys after neutron irradiation of up to 16.3 dpa between 250 and 450 °C , 2014 .

[31]  Y. Carlan,et al.  Effect of thermal aging on the microstructure and mechanical properties of 7–11 CrW steels , 2000 .

[32]  Akira Kohyama,et al.  Dependence of impact properties on irradiation temperature in reduced-activation martensitic steels , 1998 .

[33]  Ronald L. Klueh,et al.  Embrittlement of CrMo steels after low fluence irradiation in HFIR , 1995 .

[34]  M. Rieth,et al.  Mechanical behavior of reduced-activation and conventional martensitic steels after neutron irradiation in the range 250–450°C , 2000 .

[35]  Jarir Aktaa,et al.  Study of helium embrittlement in boron doped EUROFER97 steels , 2009 .

[36]  A. Möslang,et al.  Characterization of radiation induced defects in EUROFER 97 after neutron irradiation , 2011 .

[37]  N. Baluc,et al.  Investigation of liquid LBE embrittlement effects on irradiated ferritic/martensitic steels by slow-strain-rate tensile tests , 2012 .

[38]  G. Odette,et al.  Development of mechanical property correlation methodology for fusion environments , 1979 .

[39]  J. Weertman,et al.  Investigation of microstructural changes in a ferritic steel caused by high temperature fatigue , 1988 .

[40]  Jarir Aktaa,et al.  Assessment of neutron irradiation effects on RAFM steels , 2013 .

[41]  H. Liao,et al.  Investigation on microstructure and properties of narrow-gap laser welding on reduced activation ferritic/martensitic steel CLF-1 with a thickness of 35 mm , 2018 .

[42]  Alessandro Alemberti,et al.  Overview of lead-cooled fast reactor activities , 2014 .

[43]  K. Shiba,et al.  Effect of helium production on swelling of F82H irradiated in HFIR , 2000 .

[44]  K. Wolski,et al.  Influence of CO2 purity on the oxidation of a 12Cr ferritic – martensitic steel at 550°C and importance of the initial stage , 2012 .

[45]  K. Sun,et al.  Emulation of reactor irradiation damage using ion beams , 2014 .

[46]  Meimei Li,et al.  Microstructural evolution of neutron-irradiated T91 and NF616 to ∼4.3 dpa at 469 °C ☆ , 2017 .

[47]  Jean-Charles Jaboulay,et al.  Design of the helium cooled lithium lead breeding blanket in CEA: from TBM to DEMO , 2017 .

[48]  J. Aktaa,et al.  Mechanical properties and TEM examination of RAFM steels irradiated up to 70 dpa in BOR-60 , 2011 .

[49]  A. Weisenburger,et al.  T91 cladding tubes with and without modified FeCrAlY coatings exposed in LBE at different flow, stress and temperature conditions , 2008 .

[50]  Alfons Weisenburger,et al.  Corrosion, Al containing corrosion barriers and mechanical properties of steels foreseen as structural materials in liquid lead alloy cooled nuclear systems , 2011 .

[51]  Tetsuji Noda,et al.  Development of low activation Ferritic steels , 1986 .

[52]  Heishichiro Takahashi,et al.  Effects of Fast Reactor Irradiation Conditions on Tensile and Transient Burst Properties of Ferritic/Martensitic Steel Claddings , 2007 .

[53]  C. Petersen,et al.  Post irradiation examination of RAF/M steels after fast reactor irradiation up to 33 dpa and < 340⁰C (ARBOR 1) , 2010 .

[54]  M. V. Leont’eva-Smirnova,et al.  Advances in Structural Materials for Fast-Reactor Cores , 2016 .

[55]  A. Kohyama,et al.  Microstructural developments in Fe-Cr-W low activation ferritic steels under dual beam charged particle irradiation , 1991 .

[56]  Michael L Santella,et al.  Issues in replacing Cr-Mo steels and stainless steels with 9Cr-1Mo-V steel , 2004 .

[57]  I. Wright,et al.  A review of the oxidation behaviour of structural alloys in steam , 2010 .

[58]  D. Stow,et al.  Void-swelling in irons and ferritic steels: II. An experimental survey of materials irradiated in a fast reactor , 1979 .

[59]  R. Klueh,et al.  Charpy Impact Properties of Reduced-Activation Ferritic/Martensitic Steels Irradiated in HFIR up to 20 dpa , 2003 .

[60]  Wei Qu,et al.  Progress in corrosion resistant materials for supercritical water reactors , 2009 .

[61]  C. Petersen,et al.  Tensile and low cycle fatigue properties of different ferritic/martensitic steels after the fast reactor irradiation ‘ARBOR 1’ , 2009 .

[62]  S. Zinkle,et al.  Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications , 2017 .

[63]  Isabelle Monnet,et al.  Cyclically induced softening due to low-angle boundary annihilation in a martensitic steel , 2005 .

[64]  V. Chernov,et al.  Investigation of heat treatment conditions on the structure of 12% chromium reduced activation steels , 2002 .

[65]  D. Gelles Swelling in several commercial alloys irradiated to very high neutron fluence , 1984 .

[66]  L. Giancarli,et al.  Some radiological limitations on the compositions of low-activation materials for power reactors , 1988 .

[67]  H. Böhm,et al.  Einfluss einer phasenumwandlung auf das auftreten der hochtemperaturversprödung nach neutronenbestrahlung , 1967 .

[68]  Yong Dai,et al.  Materials researches at the Paul Scherrer Institute for developing high power spallation targets , 2009 .

[69]  T. Byun,et al.  Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors , 2012, Metallurgical and Materials Transactions A.

[70]  A. Pineau,et al.  High-temperature mechanical properties improvement on modified 9Cr―1Mo martensitic steel through thermomechanical treatments , 2010 .

[71]  J. Bourgon,et al.  Wetting by liquid sodium and fracture path analysis of sodium induced embrittlement of 304L stainless steel , 2018 .

[72]  Sanghoon Noh,et al.  Effects of alloying elements and heat treatments on mechanical properties of Korean reduced-activation ferritic–martensitic steel , 2014 .

[73]  F. Garner,et al.  Irradiation creep and void swelling of two LMR heats of HT9 at ∼ 400°C and 165 dpa , 1996 .

[74]  A. Kohyama,et al.  Irradiation response of a reduced activation Fe-8Cr-2W martensitic steel (F82H) after FFTF irradiation , 1992 .

[75]  Y. Yano,et al.  Effect of high dose/high temperature irradiation on the microstructure of heat resistant 11Cr ferritic/martensitic steels , 2009 .

[76]  A. Möslang,et al.  Fatigue tests on a ferritic-martensitic steel at 420°C: Comparison between in-situ and postirradiation properties , 1994 .

[77]  J. Aktaa,et al.  TEM study and modeling of bubble formation in dual-beam He+/Fe3+ ion irradiated EUROFER97 , 2017 .

[78]  A. Hishinuma,et al.  Swelling of F82H irradiated at 673 K up to 51 dpa in HFIR , 2000 .

[79]  C. McHargue,et al.  Materials requirements for fusion reactors , 1978 .

[80]  M. Tabarant,et al.  Single Crystal and Sintered Alumina Corrosion in Liquid Sodium , 2017, Oxidation of Metals.

[81]  E. Lucon,et al.  Overview of the tensile properties of EUROFER in the unirradiated and irradiated conditions , 2009 .

[82]  Anton Möslang,et al.  Influence of helium on impact properties of reduced-activation ferritic/martensitic Cr-steels , 1999 .

[83]  Y. Dai,et al.  Neutron/proton irradiation and He effects on the microstructure and mechanical properties of ferritic/martensitic steels T91 and EM10 , 2011 .

[84]  S. Dudarev,et al.  Materials engineering and design for fusion—Towards DEMO design criteria , 2018, Fusion Engineering and Design.

[85]  Fujio Abe,et al.  Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants , 2008, Science and technology of advanced materials.

[86]  W. Blum,et al.  Effects of cyclic deformation on subgrain evolution and creep in 9–12% Cr-steels , 2005 .

[87]  J. Aktaa,et al.  Microstructural characterization of Eurofer-97 and Eurofer-ODS steels before and after multi-beam ion irradiations at JANNUS Saclay facility , 2015 .

[88]  M. Narui,et al.  Irradiation embrittlement of neutron-irradiated low activation ferritic steels , 1988 .

[89]  Qunying Huang,et al.  Recent progress of R&D activities on reduced activation ferritic/martensitic steels , 2013 .

[90]  T. Lechtenberg Irradiation effects in ferritic steels , 1985 .

[91]  Mikhail A. Sokolov,et al.  Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications , 2009 .

[92]  H. Schroeder,et al.  The influence of helium on the high temperature mechanical properties of DIN 1.4914 martensitic steel , 1988 .

[93]  A. Möslang,et al.  Micro-structural effects of irradiation temperature and helium content in neutron irradiated B-alloyed Eurofer97-1 steel , 2018, Nuclear Materials and Energy.

[94]  Y. Katoh,et al.  Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors , 2016 .

[95]  G. Benamati,et al.  Influence of temperature on the interaction mode of T91 and AISI 316L steels with Pb–Bi melt saturated by oxygen , 2008 .

[96]  A. Kohyama,et al.  Void swelling in reduced activation ferritic/martensitic steels under ion-beam irradiation to high fluences , 2002 .

[97]  Ronald L. Klueh,et al.  Ferritic/martensitic steels for next-generation reactors , 2007 .

[98]  M. Rieth,et al.  Improvement of reduced activation 9%Cr steels by ausforming , 2016 .

[99]  H. Matsui,et al.  Designation of alloy composition of reduced-activation martensitic steel , 1994 .

[100]  P. Skeldon,et al.  The liquid metal embrittlement of iron and ferritic steels in sodium , 1995 .

[101]  K. Shiba,et al.  Embrittlement of reduced-activation ferritic/martensitic steels irradiated in HFIR at 300°C and 400°C , 2000 .

[102]  Rafael Fernandez,et al.  MYRRHA – A multi-purpose fast spectrum research reactor , 2012 .

[103]  Knud Thomsen,et al.  MEGAPIE at SINQ – The first liquid metal target driven by a megawatt class proton beam , 2008 .

[104]  Y. Katoh,et al.  Development of castable nanostructured alloys as a new generation RAFM steels , 2018, Journal of Nuclear Materials.

[105]  W. Chen,et al.  The application of martensitic stainless steels in long lifetime fusion first wall/blankets☆ , 1979 .

[106]  Steven J. Zinkle,et al.  Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications , 2017 .

[107]  R. Montanari,et al.  Structural and mechanical properties of welded joints of reduced activation martensitic steels , 2002 .

[108]  Mychailo B. Toloczko,et al.  Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure , 2000 .

[109]  S. Ohtsuka,et al.  Tensile properties and hardness of two types of 11Cr-ferritic/martensitic steel after aging up to 45,000 h , 2016 .

[110]  A. M. Lancha,et al.  Grain boundary microchemistry and metallurgical characterization of Eurofer'97 after simulated service conditions , 2004 .

[111]  H. Matsui,et al.  Void swelling of Japanese candidate martensitic steels under FFTF/MOTA irradiation , 1996 .

[112]  R. Klueh,et al.  Impact behavior of reduced-activation steels irradiated to 24 dpa , 1996 .

[113]  S. Ukai,et al.  Irradiation creep of 11Cr-0.5Mo-2W,V,Nb ferritic-martensitic, modified 316, and 15Cr-20Ni austenitic S.S. irradiated in FFTF to 103-206 dpa , 2000 .

[114]  J. Vogt,et al.  Heat treatment effect of T91 martensitic steel on liquid metal embrittlement , 2008 .

[115]  M. Lambrecht,et al.  Comparison of the mechanical properties of T91 steel from the MEGAPIE, and TWIN-ASTIR irradiation programs , 2016 .

[116]  H. Böhm,et al.  Investigation of radiation induced high-temperature embrittlement of ferritic steels in the temperature range of the α-γ-transformation , 1969 .

[117]  C. Parish,et al.  Microstructure and property tailoring of castable nanostructured alloys through thermomechanical treatments , 2018, Journal of Nuclear Materials.

[118]  S. Dudarev,et al.  An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation , 2012 .

[119]  Y. Sasaki,et al.  Effect of thermo-mechanical treatment on toughness of 9Cr-W ferritic-martensitic steels during aging , 1991 .

[120]  F. Garner,et al.  Influence of high dose neutron irradiation on microstructure of EP-450 ferritic–martensitic steel irradiated in three Russian fast reactors , 2004 .

[121]  M. Tabarant,et al.  Comparative oxidation behaviour of Fe-9Cr steel in CO2 and H2O at 550 °C: Detailed analysis of the inner oxide layer , 2015 .

[122]  Yves Poitevin,et al.  The European ITER Test Blanket Modules: EUROFER97 material and TBM’s fabrication technologies development and qualification , 2017 .

[123]  E. J. Fulton,et al.  Voids in Irradiated Stainless Steel , 1967, Nature.

[124]  G. R. Odette,et al.  Helium effects on microstructural evolution in tempered martensitic steels: In situ helium implanter studies in HFIR , 2009 .

[125]  Baldev Raj,et al.  Current Status of Fast Reactors and Future Plans in India , 2011 .

[126]  X. Jia,et al.  The impact of irradiation temperature on the microstructure of F82H martensitic/ferritic steel irradiated in a proton and neutron mixed spectrum , 2002 .

[127]  S. Jitsukawa,et al.  Ferritic/martensitic steels – overview of recent results , 2002 .

[128]  M. Rieth,et al.  TEM characterization on new 9% Cr advanced steels thermomechanical treated after tempering , 2018 .

[129]  C. Petersen,et al.  Impact property degradation of ferritic/martensitic steels after the fast reactor irradiation ‘ARBOR 1’ , 2007 .

[130]  R. L. Klueh,et al.  The development of ferritic steels for fast induced-radioactivity decay for fusion reactor applications ☆ , 1985 .

[131]  J. Aktaa,et al.  Microstructural defects in EUROFER 97 after different neutron irradiation conditions , 2016 .

[132]  S. Ohtsuka,et al.  Weldability of dissimilar joint between PNC-FMS and Type 316 steel under electron beam welding , 2014 .

[133]  R. Klueh Analysis of swelling behaviour of ferritic/martensitic steels , 2018, Philosophical Magazine.

[134]  L. W. Graham Corrosion of metallic materials in HTR-helium environments , 1990 .

[135]  J. Aktaa,et al.  The effects of helium on the embrittlement and hardening of boron doped EUROFER97 steels , 2008 .

[136]  A. Alamo,et al.  Mechanical properties of 9Cr martensitic steels and ODS-FeCr alloys after neutron irradiation at 325 °C up to 42 dpa , 2007 .

[137]  F. Garner,et al.  Microstructural analysis of an HT9 fuel assembly duct irradiated in FFTF to 155 dpa at 443 °C , 2009 .

[138]  J. Aktaa,et al.  Quantitative TEM analysis of precipitation and grain boundary segregation in neutron irradiated EUROFER 97 , 2014 .

[139]  T. Nozawa,et al.  Effect of Helium on Irradiation Creep Behavior of B-Doped F82H Irradiated in HFIR , 2015 .

[140]  Jose Galabert,et al.  The European ITER Test Blanket Modules: Current status of fabrication technologies development and a way forward , 2015 .

[141]  Takanori Hirose,et al.  Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system , 2011 .

[142]  A. Pineau,et al.  Lifetime prediction of 9–12%Cr martensitic steels subjected to creep–fatigue at high temperature , 2010 .

[143]  Ronald L. Klueh,et al.  Development of ferritic steels for reduced activation: The US program , 1986 .

[144]  A. Möslang,et al.  Effect of 16.3 dpa neutron irradiation on fatigue lifetime of the RAFM steel EUROFER97 , 2011 .

[145]  F. Balbaud-Célérier,et al.  High temperature oxidation of Fe-9Cr-1Mo steel in stagnant liquid lead-bismuth at several temperatures and for different lead contents in the liquid alloy , 2008 .

[146]  E. Wakai,et al.  Reduction method of DBTT shift due to irradiation for reduced-activation ferritic/martensitic steels , 2010 .

[147]  E. Diegele,et al.  Present development status of EUROFER and ODS-EUROFER for application in blanket concepts , 2005 .

[148]  H.-C. Schneider,et al.  Tensile and low cycle fatigue properties of EUROFER97-steel after 16.3 dpa neutron irradiation at 523, 623 and 723 K , 2013 .

[149]  L. Schäfer,et al.  The development of ferritic-martensitic steels with reduced long-term activation , 1994 .

[150]  K. Sridharan,et al.  Role of grain boundary engineering in the SCC behavior of ferritic–martensitic alloy HT-9 , 2007 .

[151]  A. Pineau,et al.  Characterization of a boron alloyed 9Cr3W3CoVNbBN steel and further improvement of its high-temperature mechanical properties by thermomechanical treatments , 2013 .

[152]  Ronald L. Klueh,et al.  Microstructure-mechanical properties correlation of irradiated conventional and reduced-activation martensitic steels , 1995 .

[153]  F. Balbaud-Célérier,et al.  Modelling of the oxide scale formation on Fe‐Cr steel during exposure in liquid lead‐bismuth eutectic in the 450–600 °C temperature range , 2011 .

[154]  M. Tabarant,et al.  Oxidation of 316L(N) stainless steel in liquid sodium at 650 °C , 2014 .

[155]  Yican Wu,et al.  Status of R&D activities on materials for fusion power reactors , 2007 .

[156]  C. R. Eiholzer,et al.  Irradiation creep and swelling of the US fusion heats of HT9 and 9Cr-1Mo to 208 dpa at ~ 400°C☆ , 1994 .

[157]  L. Shao,et al.  Radiation response of alloy T91 at damage levels up to 1000 peak dpa , 2016 .

[158]  J. W. Bennett,et al.  Materials requirements for liquid metal fast breeder reactors , 1978 .

[159]  R. Rolli,et al.  Effect of helium on tensile properties and microstructure in 9%Cr–WVTa–steel after neutron irradiation up to 15 dpa between 250 and 450 °C , 2009 .

[160]  R. Schäublin,et al.  Helium and point defect accumulation: (i) microstructure and mechanical behaviour , 2008 .

[161]  S. David,et al.  Welding and weldability of candidate ferritic alloys for future advanced ultrasupercritical fossil power plants , 2013 .

[162]  D. Gelles Microstructural examination of several commercial alloys neutron irradiated to 100 dpa , 1987 .

[163]  J. V. D. Bosch,et al.  SANS and TEM of ferritic–martensitic steel T91 irradiated in FFTF up to 184 dpa at 413 °C , 2013 .

[164]  H.-C. Schneider,et al.  High-dose neutron irradiation embrittlement of RAFM steels , 2006 .

[165]  G. J. Butterworth,et al.  Development of low-activation martensitic stainless steels , 1986 .

[166]  J. Aktaa,et al.  Embrittlement behaviour of low-activation alloys with reduced boron content after neutron irradiation , 2003 .

[167]  A. Armas,et al.  Cyclic instability of martensite laths in reduced activation ferritic/martensitic steels , 2004 .

[168]  M. Aoki,et al.  Evaluation of Carburization and Decarburization Behavior of Fe-9Cr-Mo Ferritic Steels in Sodium Environment , 1992 .

[169]  S. Jitsukawa,et al.  Fracture toughness and tensile behavior of ferritic–martensitic steels irradiated at low temperatures , 1998 .

[170]  T. Mizuno,et al.  Tensile Properties of llCr-0.5Mo-2W, V, Nb Stainless Steel in LMFBR Environment , 2000 .

[171]  G. Gupta,et al.  Tensile and stress corrosion cracking behavior of ferritic–martensitic steels in supercritical water , 2009 .

[172]  K. Sridharan,et al.  Oxidation of 9Cr oxide dispersion strengthened steel exposed in supercritical water , 2007 .

[173]  A. Hishinuma,et al.  Microstructure of welded and thermal-aged low activation steel F82H IEA heat , 2000 .

[174]  T. Kruml,et al.  Low cycle fatigue of Eurofer 97 , 2008 .

[175]  Manabu Tamura,et al.  Development of potential low activation ferritic and austenitic steels , 1986 .

[176]  Y. Lejeail,et al.  Creep behaviour and failure modelling of modified 9Cr1Mo steel , 2012 .

[177]  R. Klueh,et al.  Impact behavior of 9-Cr and 12-Cr ferritic steels after low-temperature irradiation , 1988 .

[178]  R. Klueh,et al.  Microstructure of 9 Cr-1 MoVNb steel irradiated to 36 dpa at elevated temperatures in HFIR☆ , 1984 .

[179]  P. Dubuisson,et al.  Pre- and post-irradiation mechanical properties of ferritic-martensitic steels for fusion applications: EM10 base metal and EM10/EM10 welds , 1994 .

[180]  F. Garner,et al.  Influence of radiation on material properties: ASTM 13th international symposium (Part II) , 1987 .

[181]  G. Was,et al.  The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels , 2017 .

[182]  Y. Carlan,et al.  A SANS investigation of the irradiation-enhanced α–α′ phases separation in 7–12 Cr martensitic steels , 2003 .

[183]  E. E. Bloom Mechanical properties of materials in fusion reactor first-wall and blanket systems , 1979 .

[184]  E. Materna-Morris,et al.  Determining irradiation damage and recovery by instrumented indentation in RAFM steel , 2011 .

[185]  R. W. Conn,et al.  Low activation materials for fusion applications , 1984 .

[186]  David S. Gelles,et al.  Progress and critical issues of reduced activation ferritic/martensitic steel development , 2000 .

[187]  J. Aktaa,et al.  Quantitative characterization of microstructural defects in up to 32 dpa neutron irradiated EUROFER97 , 2012 .

[188]  K. Anderko Zur eignung warmfester vergütungsstähle mit 9 bis 12% chrom für komponenten im kern schneller reaktoren — ein überblick , 1980 .

[189]  M. Williams,et al.  The Calculated Performance of Various Structural Materials in Fusion-Reactor Blankets , 1976 .

[190]  E. Diegele,et al.  Development of EUROFER97 database and material property handbook , 2018, Fusion Engineering and Design.

[191]  P. Marmy,et al.  The effect of low dose irradiation on the impact fracture energy and tensile properties of pure iron and two ferritic martensitic steels , 1998 .

[192]  D. S. Gelles,et al.  Comments on "Embrittlement of CrMo steels after low fluence irradiation in high flux isotope reactor" , 1996 .

[193]  P. Bocquet,et al.  Properties of heavy components of steel grade 91 and their welds , 1993 .

[194]  D. Struwe,et al.  European lead fast reactor—ELSY , 2011 .

[195]  M. L. Hamilton,et al.  Mechanical property changes of low activation ferritic/martensitic steels after neutron irradiation , 1999 .

[196]  E. Wakai,et al.  Effect of gas atoms and displacement damage on mechanical properties and microstructures of F82H , 2006 .

[197]  Toshiyuki Takagi,et al.  Progress of electromagnetic analysis for fusion reactors , 1998 .

[198]  Q. Yan,et al.  Void swelling in ferritic-martensitic steels under high dose ion irradiation: Exploring possible contributions to swelling resistance , 2016 .

[199]  Mikhail A. Sokolov,et al.  Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket , 2011 .

[200]  C. Petersen,et al.  The ARBOR irradiation project , 2002 .

[201]  A. V. Kozlov,et al.  Development of structural steel for fuel elements and fuel assemblies of sodium-cooled fast reactors , 2010 .

[202]  D. R. Harries,et al.  Materials research and development for NET , 1985 .

[203]  Michael Rieth,et al.  Embrittlement behaviour of different international low activation alloys after neutron irradiation , 1998 .

[204]  Pascal Yvon,et al.  Update of the French R&D strategy on gas-cooled reactors , 2010 .

[205]  F. Rouillard,et al.  Corrosion of 9-12Cr ferritic–martensitic steels in high-temperature CO2 , 2016 .

[206]  Kazuhiro Kimura,et al.  Inherent creep strength and long term creep strength properties of ferritic steels , 1997 .

[207]  Ying Yang,et al.  Effects of Alloying Elements and Thermomechanical Treatment on 9Cr Reduced Activation Ferritic-Martensitic (RAFM) Steels , 2013 .

[208]  R. Klueh,et al.  Impact behavior of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated in HFIR☆ , 1991 .

[209]  Enrico Lucon,et al.  Irradiation resistance of Eurofer97 at 300 °C up to 10 dpa , 2004 .

[210]  R. Klueh Reduced-activation steels: Future development for improved creep strength , 2008 .

[211]  Shoji Kotake,et al.  Evaluation of JSFR Key Technologies , 2012 .

[212]  Shoji Kotake,et al.  Design Study and R&D Progress on Japan Sodium-Cooled Fast Reactor , 2011 .

[213]  D. Dulieu,et al.  The development of low-activation martensitic 9 and 11%Cr,W,V stainless steels for fusion reactor applications , 1988 .

[214]  G. Srinivasan,et al.  Development of filler wires for welding of reduced activation ferritic martenstic steel for India's test blanket module of ITER , 2011 .

[215]  R. Klueh,et al.  Heat treatment effects on impact toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated to 100 dpa , 1998 .

[216]  D. Gilbon,et al.  Behaviour of different ferritic steels under ion, electron and fast neutron irradiation☆ , 1988 .

[217]  A. Alamo,et al.  Tensile and impact properties of 9Cr tempered martensitic steels and ODS-FeCr alloys irradiated in a fast reactor at 325 °C up to 78 dpa , 2011 .

[218]  R. Klueh,et al.  Hardening mechanisms of reduced activation ferritic/martensitic steels irradiated at 300 °C , 2009 .

[219]  B. Fournier,et al.  Comparison of various 9–12%Cr steels under fatigue and creep-fatigue loadings at high temperature , 2011 .

[220]  Baldev Raj,et al.  Progress in the development of reduced activation ferritic-martensitic steels and fabrication technologies in India , 2010 .

[221]  A. Möslang,et al.  Helium influence on the microstructure and swelling of 9%Cr ferritic steel after neutron irradiation to 16.3 dpa , 2014 .

[222]  R. Sorci,et al.  Development of innovative steels and thermo-mechanical treatments for DEMO high operating temperature blanket options , 2018, Nuclear Materials and Energy.

[223]  P. Dubuisson,et al.  Microstructural evolution of ferritic-martensitic steels irradiated in the fast breeder reactor Phénix , 1993 .