An Adaptive Pseudo-Wavelet Approach for Solving Nonlinear Partial Differential Equations
暂无分享,去创建一个
[1] G. Beylkin,et al. On the representation of operators in bases of compactly supported wavelets , 1992 .
[2] Åke Björck,et al. Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.
[3] Ronald R. Coifman,et al. Wavelet-Like Bases for the Fast Solution of Second-Kind Integral Equations , 1993, SIAM J. Sci. Comput..
[4] Gregory Beylkin,et al. On the Adaptive Numerical Solution of Nonlinear Partial Differential Equations in Wavelet Bases , 1997 .
[5] K AlpertBradley. A class of bases in L2 for the sparse representations of integral operators , 1993 .
[6] J. Bony,et al. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .
[7] Andrew J. Majda,et al. A simple one-dimensional model for the three-dimensional vorticity equation , 1985 .
[8] C. Basdevant,et al. Spectral and finite difference solutions of the Burgers equation , 1986 .
[9] M. Victor Wickerhauser,et al. Adapted wavelet analysis from theory to software , 1994 .
[10] E. Hopf. The partial differential equation ut + uux = μxx , 1950 .
[11] G. Beylkin. Wavelets and Fast Numerical Algorithms , 1993, comp-gas/9304004.
[12] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[13] J. Burgers. A mathematical model illustrating the theory of turbulence , 1948 .
[14] Y. Meyer. Wavelets and Operators , 1993 .
[15] DaubechiesIngrid. Orthonormal bases of compactly supported wavelets II , 1993 .
[16] Bengt Fornberg,et al. A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[17] A. Booth. Numerical Methods , 1957, Nature.
[18] Amara Lynn Graps,et al. An introduction to wavelets , 1995 .
[19] Using wavelets to solve the Burgers equation: A comparative study. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[20] Stanley Osher,et al. Fast Wavelet Based Algorithms for Linear Evolution Equations , 1994, SIAM J. Sci. Comput..
[21] G. Beylkin. On the fast algorithm for multiplication of functions in the wavelet bases , 1993 .
[22] J. Cole. On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .
[23] J. Pasciak,et al. Parallel multilevel preconditioners , 1990 .
[24] A. Haar. Zur Theorie der orthogonalen Funktionensysteme , 1910 .
[25] B. Alpert. A class of bases in L 2 for the sparse representations of integral operators , 1993 .
[26] B. Fornberg. On a Fourier method for the integration of hyperbolic equations , 1975 .
[27] J. M. Keiser,et al. A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs , 1998 .
[28] W. Dahmen,et al. Multilevel preconditioning , 1992 .
[29] S. Jaffard. Wavelet methods for fast resolution of elliptic problems , 1992 .
[30] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[31] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[32] P. L. Sachdev,et al. Nonlinear Diffusive Waves , 1987 .