Genome of the Opportunistic Pathogen Streptococcus sanguinis

ABSTRACT The genome of Streptococcus sanguinis is a circular DNA molecule consisting of 2,388,435 bp and is 177 to 590 kb larger than the other 21 streptococcal genomes that have been sequenced. The G+C content of the S. sanguinis genome is 43.4%, which is considerably higher than the G+C contents of other streptococci. The genome encodes 2,274 predicted proteins, 61 tRNAs, and four rRNA operons. A 70-kb region encoding pathways for vitamin B12 biosynthesis and degradation of ethanolamine and propanediol was apparently acquired by horizontal gene transfer. The gene complement suggests new hypotheses for the pathogenesis and virulence of S. sanguinis and differs from the gene complements of other pathogenic and nonpathogenic streptococci. In particular, S. sanguinis possesses a remarkable abundance of putative surface proteins, which may permit it to be a primary colonizer of the oral cavity and agent of streptococcal endocarditis and infection in neutropenic patients.

[1]  J. Glass,et al.  Genome Sequence of Avery's Virulent Serotype 2 Strain D39 of Streptococcus pneumoniae and Comparison with That of Unencapsulated Laboratory Strain R6 , 2006, Journal of bacteriology.

[2]  G. B. Golding,et al.  Gene gain and gene loss in streptococcus: is it driven by habitat? , 2006, Molecular biology and evolution.

[3]  Katherine H. Huang,et al.  Comparative genomics of the lactic acid bacteria , 2006, Proceedings of the National Academy of Sciences.

[4]  R. Lamont,et al.  Structural Characterization of Peptide-Mediated Inhibition of Porphyromonas gingivalis Biofilm Formation , 2006, Infection and Immunity.

[5]  J. Gibrat,et al.  The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Shawn R Campagna,et al.  Autoinducer 2: a concentration‐dependent signal for mutualistic bacterial biofilm growth , 2006, Molecular microbiology.

[7]  Michal J. Nagiec,et al.  Molecular genetic anatomy of inter- and intraserotype variation in the human bacterial pathogen group A Streptococcus. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[8]  H. Baker,et al.  Influence of BrpA on Critical Virulence Attributes of Streptococcus mutans , 2006, Journal of bacteriology.

[9]  R. Rappuoli,et al.  A pneumococcal pilus influences virulence and host inflammatory responses. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Robert D. Finn,et al.  Pfam: clans, web tools and services , 2005, Nucleic Acids Res..

[11]  Dmitrij Frishman,et al.  MIPS: analysis and annotation of proteins from whole genomes in 2005 , 2006, Nucleic Acids Res..

[12]  Robin Patel,et al.  Emergence of quinolone resistance among viridans group streptococci isolated from the oropharynx of neutropenic peripheral blood stem cell transplant patients receiving quinolone antimicrobial prophylaxis , 2005, European Journal of Clinical Microbiology and Infectious Diseases.

[13]  D. Cvitkovitch,et al.  Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  E. Beckman,et al.  Oral Streptococci and Cardiovascular Disease: Searching for the Platelet Aggregation-Associated Protein Gene and Mechanisms of Streptococcus sanguis-Induced Thrombosis. , 2005, Journal of periodontology.

[15]  G. Bensi,et al.  Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Jaideep P. Sundaram,et al.  Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  C. Munro,et al.  Identification of Virulence Determinants for Endocarditis in Streptococcus sanguinis by Signature-Tagged Mutagenesis , 2005, Infection and Immunity.

[18]  J. Musser,et al.  Evolutionary origin and emergence of a highly successful clone of serotype M1 group a Streptococcus involved multiple horizontal gene transfer events. , 2005, The Journal of infectious diseases.

[19]  Michal J. Nagiec,et al.  Genome sequence of a serotype M28 strain of group a streptococcus: potential new insights into puerperal sepsis and bacterial disease specificity. , 2005, The Journal of infectious diseases.

[20]  Søren Brunak,et al.  Prediction of twin-arginine signal peptides , 2005, BMC Bioinformatics.

[21]  R. Rappuoli,et al.  Genome Analysis Reveals Pili in Group B Streptococcus , 2005, Science.

[22]  B. Bensing,et al.  Two Additional Components of the Accessory Sec System Mediating Export of the Streptococcus gordonii Platelet-Binding Protein GspB , 2005, Journal of bacteriology.

[23]  D. Morrison,et al.  Two Distinct Functions of ComW in Stabilization and Activation of the Alternative Sigma Factor ComX in Streptococcus pneumoniae , 2005, Journal of bacteriology.

[24]  C. V. van Dolleweerd,et al.  Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands , 2005, Molecular microbiology.

[25]  Lutz Schmitt,et al.  Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (Review) , 2005, Molecular membrane biology.

[26]  Matthias Müller,et al.  The Tat pathway in bacteria and chloroplasts (Review) , 2005, Molecular membrane biology.

[27]  Dmitrij Frishman,et al.  MIPS: analysis and annotation of proteins from whole genomes in 2005 , 2005, Nucleic Acids Res..

[28]  J. Glasner,et al.  Regulation of Iron Transport in Streptococcus pneumoniae by RitR, an Orphan Response Regulator , 2004, Journal of bacteriology.

[29]  T. Bobik,et al.  Evidence that a B12-Adenosyl Transferase Is Encoded within the Ethanolamine Operon of Salmonella enterica , 2004, Journal of bacteriology.

[30]  A. Goffeau,et al.  Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus , 2004, Nature Biotechnology.

[31]  Gregory A. Buck,et al.  The genome of Cryptosporidium hominis , 2004, Nature.

[32]  J. Musser,et al.  Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. , 2004, The Journal of infectious diseases.

[33]  Qiang Chen,et al.  Investigating the role of secA2 in secretion and glycosylation of a fimbrial adhesin in Streptococcus parasanguis FW213 , 2004, Molecular microbiology.

[34]  L. Marraffini,et al.  Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae , 2004, Molecular microbiology.

[35]  J. Escalante‐Semerena,et al.  The eutD Gene of Salmonella enterica Encodes a Protein with Phosphotransacetylase Enzyme Activity , 2004, Journal of bacteriology.

[36]  R. Fleischmann,et al.  Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays , 2004, Molecular microbiology.

[37]  B. Williamson,et al.  Proteomic analysis of Trypanosoma cruzi developmental stages using isotope-coded affinity tag reagents. , 2004, Journal of proteome research.

[38]  S. Cebrat,et al.  Where does bacterial replication start? Rules for predicting the oriC region. , 2004, Nucleic acids research.

[39]  R. Burne,et al.  Identification and Characterization of the Nickel Uptake System for Urease Biogenesis in Streptococcus salivarius 57.I , 2003, Journal of bacteriology.

[40]  C. Y. Loo,et al.  Involvement of an Inducible Fructose Phosphotransferase Operon in Streptococcus gordonii Biofilm Formation , 2003, Journal of bacteriology.

[41]  J. Cisar,et al.  Genetic Loci for Coaggregation Receptor Polysaccharide Biosynthesis in Streptococcus gordonii 38 , 2003, Journal of bacteriology.

[42]  Masahira Hattori,et al.  Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. , 2003, Genome research.

[43]  C. Y. Loo,et al.  Involvement of the adc Operon and Manganese Homeostasis in Streptococcus gordonii Biofilm Formation , 2003, Journal of bacteriology.

[44]  M. Wessels,et al.  The CsrR/CsrS two-component system of group A Streptococcus responds to environmental Mg2+ , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Heath,et al.  Characterization of Streptococcus pneumoniae enoyl-(acyl-carrier protein) reductase (FabK). , 2003, The Biochemical journal.

[46]  M. Vickerman,et al.  Glucan-binding proteins of the oral streptococci. , 2003, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[47]  B. Morland,et al.  Viridans Streptococcus Bacteremia in Children on Chemotherapy for Cancer: An Underestimated Problem , 2003, Pediatric hematology and oncology.

[48]  E. Birney,et al.  Apollo: a sequence annotation editor , 2002, Genome Biology.

[49]  Runying Tian,et al.  Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Carmen Buchrieser,et al.  Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease , 2002, Molecular microbiology.

[51]  Ian T. Paulsen,et al.  Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Meng-Yao Liu,et al.  Genome sequence of a serotype M3 strain of group A Streptococcus: Phage-encoded toxins, the high-virulence phenotype, and clone emergence , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  H. Rakotoarivonina,et al.  Adhesion to cellulose of the Gram-positive bacterium Ruminococcus albus involves type IV pili. , 2002, Microbiology.

[54]  B. Bensing,et al.  An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets , 2002, Molecular microbiology.

[55]  Todd M. Smith,et al.  Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Dieter Söll,et al.  Transfer RNA-dependent amino acid biosynthesis: An essential route to asparagine formation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[57]  J. Novak,et al.  The Fap1 fimbrial adhesin is a glycoprotein: antibodies specific for the glycan moiety block the adhesion of Streptococcus parasanguis in an in vitro tooth model , 2002, Molecular microbiology.

[58]  C. Roessner,et al.  Biosynthesis of cobalamin (vitamin B(12)). , 2001, Biochemical Society transactions.

[59]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[60]  D. Söll,et al.  A Single Amidotransferase Forms Asparaginyl-tRNA and Glutaminyl-tRNA in Chlamydia trachomatis * , 2001, The Journal of Biological Chemistry.

[61]  R J Heath,et al.  Lipid biosynthesis as a target for antibacterial agents. , 2001, Progress in lipid research.

[62]  Elliot J. Lefkowitz,et al.  Genome of the Bacterium Streptococcus pneumoniae Strain R6 , 2001, Journal of bacteriology.

[63]  S. Salzberg,et al.  Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae , 2001, Science.

[64]  Bruce A. Roe,et al.  Complete genome sequence of an M1 strain of Streptococcus pyogenes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[65]  E. Mylonakis,et al.  Infective endocarditis in adults. , 2001, The New England journal of medicine.

[66]  R. Lamont,et al.  Dental plaque formation. , 2000, Microbes and infection.

[67]  Yihong Li,et al.  Natural History of Streptococcus sanguinis in the Oral Cavity of Infants: Evidence for a Discrete Window of Infectivity , 2000, Infection and Immunity.

[68]  Ke Gong,et al.  Salivary Film Expresses a Complex, Macromolecular Binding Site for Streptococcus sanguis * , 2000, The Journal of Biological Chemistry.

[69]  H. Jenkinson,et al.  Coinvasion of Dentinal Tubules byPorphyromonas gingivalis and Streptococcus gordonii Depends upon Binding Specificity of Streptococcal Antigen I/II Adhesin , 2000, Infection and Immunity.

[70]  S. Hamada,et al.  Purification, Characterization, and Molecular Analysis of the Gene Encoding Glucosyltransferase from Streptococcus oralis , 2000 .

[71]  S. Salzberg,et al.  Optimized multiplex PCR: efficiently closing a whole-genome shotgun sequencing project. , 1999, Genomics.

[72]  T. Bobik,et al.  The Propanediol Utilization (pdu) Operon ofSalmonella enterica Serovar Typhimurium LT2 Includes Genes Necessary for Formation of Polyhedral Organelles Involved in Coenzyme B12-Dependent 1,2-Propanediol Degradation , 1999, Journal of bacteriology.

[73]  S. Salzberg,et al.  Interpolated Markov models for eukaryotic gene finding. , 1999, Genomics.

[74]  G. Tannock,et al.  Cell Wall-Anchored CshA Polypeptide (259 Kilodaltons) in Streptococcus gordonii Forms Surface Fibrils That Confer Hydrophobic and Adhesive Properties , 1999, Journal of bacteriology.

[75]  D. M. Heithoff,et al.  Differential patterns of acquired virulence genes distinguish Salmonella strains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[76]  H. G. Trüper,et al.  TAXONOMIC NOTE : ERRATUM AND CORRECTION OF FURTHER SPECIFIC EPITHETS FORMED AS SUBSTANTIVES (NOUNS) 'IN APPOSITION' , 1998 .

[77]  Hui Wu,et al.  Isolation and characterization of Fap1, a fimbriae‐associated adhesin of Streptococcus parasanguis FW213 , 1998, Molecular microbiology.

[78]  G P Reddy,et al.  Structural and antigenic types of cell wall polysaccharides from viridans group streptococci with receptors for oral actinomyces and streptococcal lectins , 1997, Infection and immunity.

[79]  R. Hakenbeck,et al.  Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges , 1997, Journal of bacteriology.

[80]  H. G. Trůper,et al.  Taxonomic Note: Necessary Correction of Specific Epithets Formed as Substantives (Nouns) “in Apposition” , 1997 .

[81]  M. Stinson,et al.  The alpha-hemolysin of Streptococcus gordonii is hydrogen peroxide , 1996, Infection and immunity.

[82]  K. R. Jones,et al.  Characterization of IS199 from Streptococcus mutans V403. , 1996, Plasmid.

[83]  C. Kapadia Vitamin B12 in health and disease: part I--inherited disorders of function, absorption, and transport. , 1995, The Gastroenterologist.

[84]  T Ezaki,et al.  Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. , 1995, International journal of systematic bacteriology.

[85]  H. Jenkinson,et al.  Cell‐surface‐associated polypeptides CshA and CshB of high molecular mass are colonization determinants in the oral bacterium Streptococcus gordonii , 1994, Molecular microbiology.

[86]  M. Kilian,et al.  Adhesive Properties of Viridans Streptoccocal Species , 1994 .

[87]  P. Kolenbrander,et al.  Adhere today, here tomorrow: oral bacterial adherence , 1993, Journal of bacteriology.

[88]  H. Kotani,et al.  StsI, a new FokI isoschizomer from Streptococcus sanguis 54, cleaves 5' GGATG(N)10/14 3'. , 1992, Nucleic acids research.

[89]  R. Welch Pore‐forming cytolysins of Gram‐negative bacteria , 1991, Molecular microbiology.

[90]  L. Moore,et al.  Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface , 1990, Applied and environmental microbiology.

[91]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[92]  M. Kilian,et al.  Taxonomic Study of Viridans Streptococci: Description of Streptococcus gordonii sp. nov. and Emended Descriptions of Streptococcus sanguis (White and Niven 1946), Streptococcus oralis (Bridge and Sneath 1982), and Streptococcus mitis (Andrewes and Horder 1906) , 1989 .

[93]  J. Roth,et al.  Ethanolamine utilization in Salmonella typhimurium , 1988, Journal of bacteriology.

[94]  Nicolas Meeùs,et al.  Van Gompel L. , 1986 .

[95]  P. Handley,et al.  Surface structures (peritrichous fibrils and tufts of fibrils) found on Streptococcus sanguis strains may be related to their ability to coaggregate with other oral genera , 1985, Infection and immunity.

[96]  S. Lacks,et al.  Transfer of recombinant plasmids containing the gene for DpnII DNA methylase into strains of Streptococcus pneumoniae that produce DpnI or DpnII restriction endonucleases , 1984, Journal of bacteriology.

[97]  E. J. Morris,et al.  Adherence of Streptococcus sanguis to saliva-coated hydroxyapatite: evidence for two binding sites. , 1984, Infection and immunity.

[98]  M. Kilian,et al.  Ecology and nature of immunoglobulin A1 protease-producing streptococci in the human oral cavity and pharynx , 1981, Infection and immunity.

[99]  S. Socransky,et al.  Bacteriological studies of developing supragingival dental plaque. , 1977, Journal of periodontal research.