Adelic Chern forms and applications

Let X be a variety over a field of characteristic 0. Given a vector bundle E on X we construct Chern forms c/(?; V) T(X, Ax). Here A'x is the sheaf of Beilinson adeles and V is an adelic connection. When X is smooth WT{X, A'x) = H^R(X), the algebraic De Rham cohomology, and c,-(?) = (q(?; V)) are the usual Chern classes. We include three applications of the construction: (1) existence of adelic secondary (Chern-Simons) characteristic classes on any smooth X and any vector bundle E; (2) proof of the Bott Residue Formula for a vector field action; and (3) proof of a Gauss-Bonnet Formula on the level of differential forms, namely in the De Rham-residue complex. 0. Introduction. Let X be a scheme of finite type over a field k. According to Beilinson (Be), given any quasi-coherent ?x-module M and an integer q9 there is a flasque Ox-module A^dCM), called the sheaf of adeles. This is a gen eralization of the classical adeles of number theory (cf. Example 2.3). Moreover, there are homomorphisms d: Aj?ed(.M) ? A^(M) which make Ared(.M) into a complex, and M ?> Ared(.M) is quasi-isomorphism. Now let Qx, be the algebra of Kahler differential forms on X. In (HY) we proved that the sheaf

[1]  H. Esnault Algebraic theory of characteristic classes of bundles with connection , 1998, math/9801086.

[2]  Amnon Yekutieli RESIDUES AND DIFFERENTIAL OPERATORS ON SCHEMES , 1996, alg-geom/9602011.

[3]  H. Esnault,et al.  Algebraic Chern-Simons theory , 1996, alg-geom/9602001.

[4]  R. Hübl Adeles and differential forms. , 1996 .

[5]  V. Danilov Cohomology of Algebraic Varieties , 1996 .

[6]  P. Sastry,et al.  On residue complexes, dualizing sheaves and local cohomology modules , 1995 .

[7]  W. Graham,et al.  Localization in equivariant intersection theory and the Bott residue formula , 1995, alg-geom/9508001.

[8]  Amnon Yekutieli Traces and Differential Operators over Beilinson Completion Algebras , 1995, alg-geom/9502024.

[9]  M. Kontsevich Enumeration of Rational Curves Via Torus Actions , 1994, hep-th/9405035.

[10]  R. Dijkgraaf,et al.  The moduli space of curves , 1995 .

[11]  G. Ellingsrud,et al.  Bott's formula and enumerative geometry , 1994, alg-geom/9411005.

[12]  R. Hübl Residues of regular and meromorphic differential forms , 1994 .

[13]  V. Schechtman,et al.  DEFORMATION THEORY AND LIE ALGEBRA HOMOLOGY , 1994, alg-geom/9405013.

[14]  Jon P. May Simplicial objects in algebraic topology , 1993 .

[15]  Tonghang Zhou Algebraic Chern classes inde Rham cohomology , 1992 .

[16]  P. Sastry,et al.  An explicit construction of the Grothendieck residue complex , 1992 .

[17]  A. Huber On the Parshin-Beilinson Adeles for schemes , 1991 .

[18]  E. Kunz,et al.  Integration of differential forms on schemes. , 1990 .

[19]  E. Kunz,et al.  Regular Differential Forms , 1988 .

[20]  M. Karoubi,et al.  Algebraic Topology Via Differential Geometry , 1988 .

[21]  J. Lipman Dualizing sheaves, differentials and residues on algebraic varieties , 1984 .

[22]  Michael Atiyah,et al.  The moment map and equivariant cohomology , 1984 .

[23]  A. Parshin Chern classes, adeles and L-functions. , 1983 .

[24]  A. Beilinson Residues and adeles , 1980 .

[25]  J. Dupont Curvature and Characteristic Classes , 1978 .

[26]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[27]  F. E. Zein Complexe dualisant et applications à la classe fondamentale d'un cycle , 1978 .

[28]  J. Carrell,et al.  Vector fields and Chern numbers , 1977 .

[29]  A. K. Bousfield,et al.  On PL De Rham Theory and Rational Homotopy Type , 1976 .

[30]  Uwe Storch,et al.  Über Spurfunktionen bei vollständigen Durchschnitten. , 1975 .

[31]  F. E. Zein La classe fondamentale d'un cycle , 1974 .

[32]  T. Willmore Algebraic Geometry , 1973, Nature.

[33]  Raoul Bott,et al.  Lectures on characteristic classes and foliations , 1972 .

[34]  Nicholas M. Katz,et al.  Nilpotent connections and the monodromy theorem: Applications of a result of turrittin , 1970 .

[35]  R. Bott A residue formula for holomorphic vector-fields , 1967 .

[36]  R. Hartshorne Residues And Duality , 1966 .

[37]  J. Milnor,et al.  Lectures on characteristic classes , 1957 .