Theory of skyrmions in bilayer systems

Skyrmion is an emergent particle consisting of many spins in magnets, and has many nontrivial features such as (i) nano-scale size, (ii) topological stability, (iii) gyrodynamics, and (iv) highly efficient spin transfer torque, which make skyrmions the promising candidate for the magnetic devices. Earlier works were focusing on the bulk or thin film of Dzyaloshinskii-Moriya (DM) magnets, while recent advances are focusing on the skyrmions induced by the interfaces. Therefore, the superstructures naturally leads to the interacting skyrmions on different interfaces, which has unique dynamics compared with those on the same interface. Here we theoretically study the two skyrmions on bilayer systems employing micromagnetic simulations as well as the analysis based on Thiele equation, revealing the reaction between them such as the collision and bound state formation. The dynamics depends sensitively on the sign of DM interactions, i.e., helicities, and skyrmion numbers of two skyrmions, which can be well described by Thiele equation. Furthermore, we have found the colossal spin-transfer-torque effect of bound skyrmion pair on antiferromagnetically coupled bilayer systems.

[1]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[2]  Y. Tokura,et al.  Magnetic stripes and skyrmions with helicity reversals , 2012, Proceedings of the National Academy of Sciences.

[3]  A. N’Diaye,et al.  Tailoring the chirality of magnetic domain walls by interface engineering , 2013, Nature Communications.

[4]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[5]  M. Mochizuki,et al.  Universal current-velocity relation of skyrmion motion in chiral magnets , 2013, Nature Communications.

[6]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[7]  A. Vishwanath,et al.  Theory of the helical spin crystal: a candidate for the partially ordered state of MnSi. , 2006, Physical review letters.

[8]  M. Mochizuki Spin-wave modes and their intense excitation effects in Skyrmion crystals. , 2011, Physical review letters.

[9]  C. Pfleiderer Magnetic Order Surfaces get hairy , 2011 .

[10]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[11]  Y. Tokura,et al.  Photodrive of magnetic bubbles via magnetoelastic waves , 2015, Proceedings of the National Academy of Sciences.

[12]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[13]  N. Nagaosa,et al.  Creation of skyrmions and antiskyrmions by local heating , 2014, Nature Communications.

[14]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[15]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[16]  N. Nagaosa,et al.  Colossal spin transfer torque effect on skyrmion along the edge. , 2014, Nano letters.

[17]  M. Schmidt,et al.  Precursor phenomena at the magnetic ordering of the cubic helimagnet FeGe. , 2011, Physical review letters.

[18]  A. Fert,et al.  Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. , 2016, Nature nanotechnology.

[19]  Y. Tokura,et al.  Memory functions of magnetic skyrmions , 2015, 1501.07650.

[20]  N. Nagaosa,et al.  Dynamics of Skyrmion crystals in metallic thin films. , 2011, Physical review letters.

[21]  C. Pfleiderer,et al.  Skyrmion lattice in the doped semiconductor Fe1-xCoxSi , 2009, 0903.2587.

[22]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[23]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[24]  J. Slonczewski,et al.  Magnetic domain walls in bubble materials , 1979 .

[25]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[26]  L. Pintschovius,et al.  Partial order in the non-Fermi-liquid phase of MnSi , 2004, Nature.

[27]  T. Miyazaki,et al.  Giant magnetic tunneling e ect in Fe/Al2O3/Fe junction , 1995 .

[28]  N. Nagaosa,et al.  Inertia, diffusion, and dynamics of a driven skyrmion , 2014, 1501.00444.

[29]  A. Hubert,et al.  Thermodynamically stable magnetic vortex states in magnetic crystals , 1994 .

[30]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[31]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[32]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[33]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[34]  C. Pfleiderer,et al.  Emergent electrodynamics of skyrmions in a chiral magnet , 2012, Nature Physics.

[35]  A. N. Bogdanov,et al.  Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets , 1989 .

[36]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[37]  Parkin,et al.  Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. , 1990, Physical review letters.

[38]  Y. Tokura,et al.  Skyrmion flow near room temperature in an ultralow current density , 2012, Nature Communications.

[39]  N. Nagaosa,et al.  Berry curvature and dynamics of a magnetic bubble , 2016 .

[40]  T. Miyazaki,et al.  The Physics of Ferromagnetism , 2012 .

[41]  T. Skyrme A Unified Field Theory of Mesons and Baryons , 1962 .

[42]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[43]  S. Yi,et al.  Skyrmions and anomalous Hall effect in a Dzyaloshinskii-Moriya spiral magnet , 2009, 0903.3272.

[44]  S. Parkin,et al.  Domain-wall velocities of up to 750 m s(-1) driven by exchange-coupling torque in synthetic antiferromagnets. , 2015, Nature nanotechnology.

[45]  Yan Zhou,et al.  Magnetic bilayer-skyrmions without skyrmion Hall effect , 2015, Nature Communications.

[46]  M. Mochizuki,et al.  Current-induced skyrmion dynamics in constricted geometries. , 2013, Nature nanotechnology.

[47]  C. Pfleiderer,et al.  Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets , 2012, 1205.4780.

[48]  Y. Tokura,et al.  Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer , 2016, Science Advances.

[49]  Blue quantum fog: chiral condensation in quantum helimagnets. , 2005, Physical review letters.