SEMANTIC ASSOCIATIONS FOR CONTEXTUAL ADVERTISING

Contextual advertising systems place ads automatically in Web pages, based on the Web page content. In this paper we present a machine learning approach to contextual advertising using a novel set of features which aims to capture subtle semantic associations between the vocabularies of the ad and the Web page. We design a model for ranking ads with respect to a page which is learned using Support Vector Machines. We evaluate our model on a large set of manually evaluated ad placements. The proposed model significantly improves accuracy over a learned model using features from current work in contextual advertising.

[1]  Vassilis Plachouras,et al.  A noisy-channel approach to contextual advertising , 2007, ADKDD '07.

[2]  Aron M. Levin,et al.  A MULTI-ATTRIBUTE ANALYSIS OF PREFERENCES FOR ONLINE AND OFFLINE SHOPPING: DIFFERENCES ACROSS PRODUCTS, CONSUMERS, AND SHOPPING STAGES , 2005 .

[3]  C. Yoo,et al.  Preattentive Processing of Web Advertising , 2007 .

[4]  Lina Zhou,et al.  ONLINE SHOPPING ACCEPTANCE MODEL — A CRITICAL SURVEY OF CONSUMER FACTORS IN ONLINE SHOPPING , 2007 .

[5]  Andrei Z. Broder,et al.  A semantic approach to contextual advertising , 2007, SIGIR.

[6]  Proceedings of The Fourth Text REtrieval Conference, TREC 1995, Gaithersburg, Maryland, USA, November 1-3, 1995 , 1995, TREC.

[7]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[8]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[9]  Ben He,et al.  Terrier : A High Performance and Scalable Information Retrieval Platform , 2022 .

[10]  Joshua Goodman,et al.  Finding advertising keywords on web pages , 2006, WWW '06.

[11]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[12]  J. R. Firth,et al.  A Synopsis of Linguistic Theory, 1930-1955 , 1957 .

[13]  Yoram Singer,et al.  BoosTexter: A Boosting-based System for Text Categorization , 2000, Machine Learning.

[14]  George R. Doddington,et al.  Automatic Evaluation of Machine Translation Quality Using N-gram Co-Occurrence Statistics , 2002 .

[15]  Leonid Zhukov,et al.  Clustering of bipartite advertiser-keyword graph , 2003 .

[16]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[17]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[18]  L. Adler A Modification of Kendall's Tau for the Case of Arbitrary Ties in Both Rankings , 1957 .

[19]  Andrea Esuli,et al.  Best bets: thousands of queries in search of a client , 2004, WWW Alt. '04.

[20]  Ravi Kumar,et al.  Content, Metadata, and Behavioral Information: Directions for Yahoo! Research , 2006, IEEE Data Eng. Bull..

[21]  Berthier A. Ribeiro-Neto,et al.  A belief network model for IR , 1996, SIGIR '96.

[22]  Massimiliano Ciaramita,et al.  A Figure of Merit for the Evaluation of Web-Corpus Randomness , 2006, EACL.

[23]  Hemant K. Bhargava,et al.  Implementing Sponsored Search in Web Search Engines: Computational Evaluation of Alternative Mechanisms , 2007, INFORMS J. Comput..

[24]  Luca Becchetti,et al.  A reference collection for web spam , 2006, SIGF.

[25]  Thorsten Joachims,et al.  Learning to classify text using support vector machines - methods, theory and algorithms , 2002, The Kluwer international series in engineering and computer science.

[26]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[27]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[28]  Dennis F. Galletta,et al.  THE EFFECTS OF THE MEANINGFULNESS OF SALIENT BRAND AND PRODUCT- RELATED TEXT AND GRAPHCIS ON WEB SITE RECOGNITION , 2007 .

[29]  Berthier A. Ribeiro-Neto,et al.  Impedance coupling in content-targeted advertising , 2005, SIGIR '05.

[30]  Aneta Francová,et al.  Language of Advertising , 2008 .

[31]  Gianni Amati,et al.  Probability models for information retrieval based on divergence from randomness , 2003 .

[32]  Katherine Gallagher,et al.  The Medium Is Not the Message: Advertising Effectiveness and Content Evaluation in Print and on the Web , 2001, Journal of Advertising Research.

[33]  Ted Dunning,et al.  Accurate Methods for the Statistics of Surprise and Coincidence , 1993, CL.

[34]  Weiguo Fan,et al.  Learning to advertise , 2006, SIGIR.

[35]  Robert Krovetz,et al.  Viewing morphology as an inference process , 1993, Artif. Intell..

[36]  Koby Crammer,et al.  A new family of online algorithms for category ranking , 2002, SIGIR '02.

[37]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.