HIGH RESOLUTION SPECTROSCOPY OF BACH3(X 2A1) : FINE AND HYPERFINE STRUCTURE ANALYSIS

The pure rotational spectrum of BaCH3(X 2A1) in its ground vibrational state has been recorded using millimeter/submillimeter direct absorption techniques, the first spectroscopic information obtained for this molecule. The radical was created using Broida-type oven/d.c. discharge methods by the reaction of barium vapor and Sn(CH3)4. Twenty-eight rotational transitions of the main isotopomer 138BaCH3 were recorded, as well as five for 136BaCH3 and three for the 137BaCH3 species. Being a prolate symmetric top, K ladder structure was observed in all transitions for BaCH3, as well as fine structure splittings which arise from the unpaired electron in the molecule. For the 137Ba isotopomer, hyperfine interactions were also resolved, arising from the spin of the barium nucleus. The complete data set has been analyzed with a 2A Hamiltonian, and rotational, spin-rotational, and magnetic hyperfine/nuclear quadrupole parameters accurately determined. The fine and hyperfine structure constants established from thi...

[1]  M. Hampden‐Smith,et al.  A Review of Group 2 (Ca, Sr, Ba) Metal-Organic Compounds as Precursors for Chemical Vapor Deposition , 1997 .

[2]  M. Anderson,et al.  The pure rotational spectrum of the ground vibrational state of SrCH3(X̃ 2A1) , 1996 .

[3]  T. Miller,et al.  High resolution electronic spectroscopy of MgCH3 , 1995 .

[4]  A. J. Marr,et al.  A molecular beam optical/Stark study of calcium monomethyl , 1995 .

[5]  Timothy M. Cerny,et al.  Hyperfine structure in the electronic spectra of the CdH and CdCH3 radicals , 1994 .

[6]  A. Battersby How nature builds the pigments of life: the conquest of vitamin B12. , 1994, Science.

[7]  M. Anderson,et al.  A millimeter/submillimeter spectrometer for !high resolution studies of transient molecules , 1994 .

[8]  A. Ellis,et al.  High Resolution Electronic Spectroscopy of ZnCH3 and CdCH3 , 1993, High Resolution Spectroscopy.

[9]  M. D. Allen,et al.  The millimeter and sub-millimeter spectrum of the BaOH radical , 1993 .

[10]  D. Lide Handbook of Chemistry and Physics , 1992 .

[11]  G. Strukul Catalytic Oxidations with Hydrogen Peroxide as Oxidant , 1992 .

[12]  A. Spek,et al.  X-Ray Structural Analyses of Organomagnesium Compounds , 1993 .

[13]  Kenneth B. Wiberg,et al.  Substituent effects. 1. Methyl derivatives , 1990 .

[14]  C. Jungen,et al.  Laser‐induced fluorescence spectroscopy of the B̃–X̃ and ÖX̃ transitions of CaNH2 , 1990 .

[15]  J. Visticot,et al.  Observation and spectroscopy of metallic free radicals produced by reactive collisions during a supersonic expansion , 1990 .

[16]  A. J. Downs,et al.  Characterisation of monomeric methylsodium and methylpotassium: infrared spectra of the matrix-isolated molecules , 1990 .

[17]  P. Bernath,et al.  The à 2E–X̃ 2A1 transition of monomethyl calcium: A rotational analysis , 1989 .

[18]  R. F. Barrow,et al.  The 5d states of barium hydride; BaH and BaD , 1989 .

[19]  A. M. R. P. Bopegedera,et al.  Rotational analysis of the Ã2Π-X̃2Σ+ transition of calcium monoacetylide, CaCCH , 1988 .

[20]  P. Bernath,et al.  Observation of gas phase organometallic free radicals: Monomethyl derivatives of calcium and strontium , 1987 .

[21]  A. M. R. P. Bopegedera,et al.  Laser spectroscopy of calcium and strontium monoacetylides , 1987 .

[22]  Paul von Ragué Schleyer,et al.  Sodium, Potassium, Rubidium, and Cesium: X-Ray Structurai Analysis of Their Organic Compounds1 , 1987 .

[23]  S. Saito,et al.  The microwave spectrum of the thiomethoxy radical CH3S , 1986 .

[24]  P. Bernath,et al.  Laser spectroscopy of calcium and strontium monocyclopentadienide , 1986 .

[25]  E. Hirota High-resolution spectroscopy of transient molecules , 1985 .

[26]  S. Saito,et al.  The microwave spectrum of the methoxy radical CH3O , 1984 .

[27]  J. Atwood,et al.  Molecular structures of bis(trimethylsilyl)methyl-lithium [(LiR)n, R = CH(SiMe3)2] in the vapour (gas-phase electron diffraction: a monomer, n= 1) and the crystal (X-ray: a polymer, n=∞) , 1984 .

[28]  K. Button,et al.  Infrared and Millimeter Waves , 1983 .

[29]  J. Hoeft,et al.  Rotational spectrum and hyperfine structure of the 2Σ radicals BaF and BaCl , 1982 .

[30]  S. Saito,et al.  The microwave spectrum of the trifluoromethyl radical , 1982 .

[31]  C. Ryzlewicz,et al.  Formation and microwave spectrum of the 2Σ-radical barium-monofluoride , 1980 .

[32]  John M. Brown,et al.  A reduced form of the spin-rotation Hamiltonian for asymmetric-top molecules, with applications to HO2 and NH2 , 1979 .

[33]  A. Streitwieser,et al.  Ab initio SCF-MO calculations of methyllithium and related systems. Absence of covalent character in the carbon-lithium bonds , 1976 .

[34]  J. Brown,et al.  Microwave spectroscopy of nonlinear free radicals - I. General theory and application to the Zeeman effect in HCO , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[35]  W. Fischer,et al.  Die Hyperfeinstruktur der Ba II-Resonanzlinien und die Quadrupolmomente der ungeraden Bariumisotope , 1968 .

[36]  Lester Andrews,et al.  Infrared Spectrum of the Methyl Radical in Solid Argon , 1967 .