An Improved Method for Pan-Tropical Above-Ground Biomass and Canopy Height Retrieval Using CYGNSS

An improved method for retrieving Above-ground Biomass (AGB) and Canopy Height (CH) based on an observable from Cyclone Global Navigation Satellite System (CYGNSS), soil moisture from Soil Moisture Active Passive (SMAP) and location is proposed. The observable derived from CYGNSS is more sensitive to vegetation. The CYGNSS observable, soil moisture and the location are used as the input features of an Artificial Neural Network (ANN) to retrieve AGB and CH. The sensitivity analysis of the CYGNSS observable to target parameters shows that the proposed observable is more sensitive to AGB/CH than the conventional observable. The AGB/CH retrievals of the improved method show that it has better performance than that of the traditional method, especially in the areas with AGB in the range of 0 to100 Mg/ha and CH in the range of 0 to10 m. For AGB retrievals, the root mean square error (RMSE) and correlation coefficient are 64.84 Mg/ha and 0.80 in the range of 0 to 550 Mg/ha. Compared with the traditional method, the RMSE is decreased by 11.63%, while the correlation coefficient is increased by 5.26%. For CH retrievals, the RMSE and correlation coefficient are 5.97 m and 0.83 in the range of 0 to 45 m. The RMSE is decreased by 12.59%, while the correlation coefficient is increased by 5.06%. The analysis of the improved method in different areas shows that the performance of the improved method over the area with high vegetation is better than the area with low vegetation. The results obtained here further strengthens the capability of GNSS-R for global AGB/CH retrievals as well as different land cover areas.