Nonparametric models for functional data, with application in regression, time series prediction and curve discrimination

The aim of this article is to investigate a new approach for estimating a regression model with scalar response and in which the explanatory variable is valued in some abstract semi-metric functional space. Nonparametric estimates are introduced, and their behaviors are investigated in the situation of dependent data. Our study contains asymptotic results with rates. The curse of dimensionality, which is of great importance in this infinite dimensional setting, is highlighted by our asymptotic results. Some ideas, based on fractal dimension modelizations, are given to reduce dimensionality of the problem. Generalization of the model leads to possible applications in several fields of applied statistics, and we present three applications among these namely: regression estimation, time-series prediction, and curve discrimination. As a by-product of our approach in the finite-dimensional context, we give a new proof for the rates of convergence of some Nadaraya–Watson kernel-type smoother without needing any smoothness assumption on the density function of the explanatory variables.

[1]  Mostafa Gabbouhy,et al.  Un résultat d'existence de solutions faibles du problème d'écoulement non saturé modélisé par un système parabolique-elliptique non linéaire doublement dégénéré , 2000 .

[2]  André Mas,et al.  Testing hypotheses in the functional linear model , 2003 .

[3]  B. Presnell,et al.  Nonparametric estimation of the mode of a distribution of random curves , 1998 .

[4]  E. Rio,et al.  Théorie asymptotique de processus aléatoires faiblement dépendants , 2000 .

[5]  P. Vieu,et al.  Functional nonparametric model for time series: a fractal approach for dimension reduction , 2002 .

[6]  John Odenckantz,et al.  Nonparametric Statistics for Stochastic Processes: Estimation and Prediction , 2000, Technometrics.

[7]  Frédéric Ferraty,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[8]  T. Hastie,et al.  [A Statistical View of Some Chemometrics Regression Tools]: Discussion , 1993 .

[9]  A. Cuevas,et al.  Linear functional regression: The case of fixed design and functional response , 2002 .

[10]  Frédéric Ferraty,et al.  Dimension fractale et estimation de la régression dans des espaces vectoriels semi-normés , 2000 .

[11]  Frédéric Ferraty,et al.  The Functional Nonparametric Model and Application to Spectrometric Data , 2002, Comput. Stat..

[12]  Sophie Dabo-Niang,et al.  Estimation de la densité dans un espace de dimension infinie : Application aux diffusions , 2002 .

[13]  A. Berlinet,et al.  Higher Order Analysis at Lebesgue Points , 2000 .

[14]  Frédéric Ferraty,et al.  Curves discrimination: a nonparametric functional approach , 2003, Comput. Stat. Data Anal..

[15]  Michael G. Schimek,et al.  Smoothing and Regression: Approaches, Computation, and Application , 2000 .

[16]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .