Nadaraya-Watson estimator for stochastic processes driven by stable Lévy motions
暂无分享,去创建一个
[1] P D Ditlevsen. Anomalous jumping in a double-well potential. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[2] Jianqing Fan. Rejoinder: A selective overview of nonparametric methods in financial econometrics , 2004, math/0411034.
[3] M. Arfi. Non‐parametric Variance Estimation from Ergodic Samples , 1998 .
[4] E. Nadaraya. On Estimating Regression , 1964 .
[5] The Euler Scheme for L?evy Driven Stochastic Difierential Equations: Limit Theorems , 2004, math/0410118.
[6] Hiroki Masuda,et al. Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps , 2007 .
[7] H. Zanten. Rates of convergence and asymptotic normality of kernel estimators for ergodic diffusion processes , 2000 .
[8] W. Wu,et al. Nonlinear system theory: another look at dependence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[9] I. A. Koutrouvelis. An iterative procedure for the estimation of the parameters of stable laws , 1981 .
[10] G. S. Watson,et al. Smooth regression analysis , 1964 .
[11] Hongwei Long. Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises , 2009 .
[12] Bert Fristedt,et al. Sample Functions of Stochastic Processes with Stationary, Independent Increments. , 1972 .
[13] Q. Yao,et al. Nonparametric regression under dependent errors with infinite variance , 2004 .
[14] Arnak Dalalyan. Sharp adaptive estimation of the drift function for ergodic diffusions , 2005 .
[15] S. James Press,et al. Estimation in Univariate and Multivariate Stable Distributions , 1972 .
[16] A. Weron,et al. Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .
[17] B. L. S Pbakasa rao,et al. Estimation of the drift for diffusion process , 1985 .
[18] Y. Kutoyants. Statistical Inference for Ergodic Diffusion Processes , 2004 .
[19] P. Ditlevsen,et al. Observation of α‐stable noise induced millennial climate changes from an ice‐core record , 1999 .
[20] J. Norris. Appendix: probability and measure , 1997 .
[21] Nonparametric drift estimation from ergodic samples , 1995 .
[22] W. Wu. NONPARAMETRIC ESTIMATION FOR STATIONARY PROCESSES , 2003 .
[23] M. Hoffmann,et al. Nonparametric estimation of scalar diffusions based on low frequency data , 2002, math/0503680.
[24] Ioannis A. Koutrouvelis,et al. Regression-Type Estimation of the Parameters of Stable Laws , 1980 .
[25] Marc Hoffmann,et al. Adaptive estimation in diffusion processes , 1999 .
[26] Jianqing Fan,et al. Local polynomial modelling and its applications , 1994 .
[27] Jean Jacod,et al. The approximate Euler method for Lévy driven stochastic differential equations , 2005 .
[28] Liang Peng,et al. Prediction and nonparametric estimation for time series with heavy tails , 2002 .
[29] W. Schoutens. Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .
[30] Jan Rosiński,et al. On Ito Stochastic Integration with Respect to $p$-Stable Motion: Inner Clock, Integrability of Sample Paths, Double and Multiple Integrals , 1986 .
[31] A. Dalalyan,et al. ASYMPTOTICALLY EFFICIENT TREND COEFFICIENT ESTIMATION FOR ERGODIC DIFFUSION , 2003 .
[32] Yaozhong Hu,et al. Least squares estimator for Ornstein―Uhlenbeck processes driven by α-stable motions , 2009 .
[33] W. Härdle. Applied Nonparametric Regression , 1992 .
[34] A. Dalalyan,et al. Asymptotically Efficient Estimation of the Derivative of the Invariant Density , 2003 .
[35] Jianqing Fan. Design-adaptive Nonparametric Regression , 1992 .
[36] Wim Schoutens,et al. Exotic Option Pricing and Advanced Lévy Models , 2005 .
[37] P. Lee,et al. 14. Simulation and Chaotic Behaviour of α‐Stable Stochastic Processes , 1995 .
[38] Jianqing Fan,et al. A Reexamination of Diffusion Estimators With Applications to Financial Model Validation , 2003 .
[39] Yaozhong Hu,et al. Parameter estimation for Ornstein-Uhlenbeck processes driven by α-stable Lévy motions , 2007 .
[40] Jinqiao Duan,et al. Fractional Fokker-Planck Equation for Nonlinear Stochastic Differential Equations Driven by Non-Gaussian Levy Stable Noises , 1999, math/0409486.
[41] P. Protter. Stochastic integration and differential equations , 1990 .
[42] Hiroki Masuda,et al. Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes , 2010 .
[43] Adaptive estimation in diusion processes , 1999 .
[44] Vladimir Spokoiny,et al. Adaptive drift estimation for nonparametric diffusion model , 2000 .
[45] D. Applebaum. Lévy Processes and Stochastic Calculus: Preface , 2009 .
[46] J. Rosinski,et al. Moment inequalities for real and vector p-stable stochastic integrals , 1985 .
[47] G. Banon. Nonparametric Identification for Diffusion Processes , 1978 .
[48] J. Doob. Stochastic processes , 1953 .
[49] Peter C. B. Phillips,et al. Fully Nonparametric Estimation of Scalar Diffusion Models , 2001 .
[50] A note on “Least squares estimator for discretely observed Ornstein–Uhlenbeck processes with small Lévy noises” , 2010 .
[51] S. Resnick,et al. Is network traffic approximated by stable Levy motion or fractional Brownian motion , 2002 .
[52] Hongwei Long. Parameter estimation for a class of stochastic differential equations driven by small stable noises from discrete observations , 2010 .
[53] Olav Kallenberg,et al. Some time change representations of stable integrals, via predictable transformations of local martingales , 1992 .
[54] P. Tuan. Nonparametric estimation of the drift coefficient in the diffusion equation , 1981 .
[55] 佐藤 健一. Lévy processes and infinitely divisible distributions , 2013 .
[56] M. Taqqu,et al. Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .
[57] Denis Bosq,et al. Nonparametric statistics for stochastic processes , 1996 .
[58] Peter C. Kiessler,et al. Statistical Inference for Ergodic Diffusion Processes , 2006 .
[59] A. Joulin. On Maximal Inequalities for Stable Stochastic Integrals , 2007 .