Nadaraya-Watson estimator for stochastic processes driven by stable Lévy motions

We discuss the nonparametric Nadaraya-Watson (N-W) estimator of the drift function for ergodic stochastic processes driven by α-stable noises and observed at discrete instants. Under geometrical mixing condition, we derive consistency and rate of convergence of the N-W estimator of the drift function. Furthermore, we obtain a central limit theorem for stable stochastic integrals. The central limit theorem has its own interest and is the crucial tool for the proofs. A simulation study illustrates the finite sample properties of the N-W estimator. AMS 2000 subject classification. 60G52, 62G20, 62M05, 65C30

[1]  P D Ditlevsen Anomalous jumping in a double-well potential. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Jianqing Fan Rejoinder: A selective overview of nonparametric methods in financial econometrics , 2004, math/0411034.

[3]  M. Arfi Non‐parametric Variance Estimation from Ergodic Samples , 1998 .

[4]  E. Nadaraya On Estimating Regression , 1964 .

[5]  The Euler Scheme for L?evy Driven Stochastic Difierential Equations: Limit Theorems , 2004, math/0410118.

[6]  Hiroki Masuda,et al.  Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps , 2007 .

[7]  H. Zanten Rates of convergence and asymptotic normality of kernel estimators for ergodic diffusion processes , 2000 .

[8]  W. Wu,et al.  Nonlinear system theory: another look at dependence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  I. A. Koutrouvelis An iterative procedure for the estimation of the parameters of stable laws , 1981 .

[10]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[11]  Hongwei Long Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises , 2009 .

[12]  Bert Fristedt,et al.  Sample Functions of Stochastic Processes with Stationary, Independent Increments. , 1972 .

[13]  Q. Yao,et al.  Nonparametric regression under dependent errors with infinite variance , 2004 .

[14]  Arnak Dalalyan Sharp adaptive estimation of the drift function for ergodic diffusions , 2005 .

[15]  S. James Press,et al.  Estimation in Univariate and Multivariate Stable Distributions , 1972 .

[16]  A. Weron,et al.  Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .

[17]  B. L. S Pbakasa rao,et al.  Estimation of the drift for diffusion process , 1985 .

[18]  Y. Kutoyants Statistical Inference for Ergodic Diffusion Processes , 2004 .

[19]  P. Ditlevsen,et al.  Observation of α‐stable noise induced millennial climate changes from an ice‐core record , 1999 .

[20]  J. Norris Appendix: probability and measure , 1997 .

[21]  Nonparametric drift estimation from ergodic samples , 1995 .

[22]  W. Wu NONPARAMETRIC ESTIMATION FOR STATIONARY PROCESSES , 2003 .

[23]  M. Hoffmann,et al.  Nonparametric estimation of scalar diffusions based on low frequency data , 2002, math/0503680.

[24]  Ioannis A. Koutrouvelis,et al.  Regression-Type Estimation of the Parameters of Stable Laws , 1980 .

[25]  Marc Hoffmann,et al.  Adaptive estimation in diffusion processes , 1999 .

[26]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[27]  Jean Jacod,et al.  The approximate Euler method for Lévy driven stochastic differential equations , 2005 .

[28]  Liang Peng,et al.  Prediction and nonparametric estimation for time series with heavy tails , 2002 .

[29]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[30]  Jan Rosiński,et al.  On Ito Stochastic Integration with Respect to $p$-Stable Motion: Inner Clock, Integrability of Sample Paths, Double and Multiple Integrals , 1986 .

[31]  A. Dalalyan,et al.  ASYMPTOTICALLY EFFICIENT TREND COEFFICIENT ESTIMATION FOR ERGODIC DIFFUSION , 2003 .

[32]  Yaozhong Hu,et al.  Least squares estimator for Ornstein―Uhlenbeck processes driven by α-stable motions , 2009 .

[33]  W. Härdle Applied Nonparametric Regression , 1992 .

[34]  A. Dalalyan,et al.  Asymptotically Efficient Estimation of the Derivative of the Invariant Density , 2003 .

[35]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[36]  Wim Schoutens,et al.  Exotic Option Pricing and Advanced Lévy Models , 2005 .

[37]  P. Lee,et al.  14. Simulation and Chaotic Behaviour of α‐Stable Stochastic Processes , 1995 .

[38]  Jianqing Fan,et al.  A Reexamination of Diffusion Estimators With Applications to Financial Model Validation , 2003 .

[39]  Yaozhong Hu,et al.  Parameter estimation for Ornstein-Uhlenbeck processes driven by α-stable Lévy motions , 2007 .

[40]  Jinqiao Duan,et al.  Fractional Fokker-Planck Equation for Nonlinear Stochastic Differential Equations Driven by Non-Gaussian Levy Stable Noises , 1999, math/0409486.

[41]  P. Protter Stochastic integration and differential equations , 1990 .

[42]  Hiroki Masuda,et al.  Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes , 2010 .

[43]  Adaptive estimation in diusion processes , 1999 .

[44]  Vladimir Spokoiny,et al.  Adaptive drift estimation for nonparametric diffusion model , 2000 .

[45]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[46]  J. Rosinski,et al.  Moment inequalities for real and vector p-stable stochastic integrals , 1985 .

[47]  G. Banon Nonparametric Identification for Diffusion Processes , 1978 .

[48]  J. Doob Stochastic processes , 1953 .

[49]  Peter C. B. Phillips,et al.  Fully Nonparametric Estimation of Scalar Diffusion Models , 2001 .

[50]  A note on “Least squares estimator for discretely observed Ornstein–Uhlenbeck processes with small Lévy noises” , 2010 .

[51]  S. Resnick,et al.  Is network traffic approximated by stable Levy motion or fractional Brownian motion , 2002 .

[52]  Hongwei Long Parameter estimation for a class of stochastic differential equations driven by small stable noises from discrete observations , 2010 .

[53]  Olav Kallenberg,et al.  Some time change representations of stable integrals, via predictable transformations of local martingales , 1992 .

[54]  P. Tuan Nonparametric estimation of the drift coefficient in the diffusion equation , 1981 .

[55]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[56]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[57]  Denis Bosq,et al.  Nonparametric statistics for stochastic processes , 1996 .

[58]  Peter C. Kiessler,et al.  Statistical Inference for Ergodic Diffusion Processes , 2006 .

[59]  A. Joulin On Maximal Inequalities for Stable Stochastic Integrals , 2007 .