Targeting a Versatile Actuator for EU-DEMO: Real Time Monitoring of Pellet Delivery to Facilitate Burn Control

[1]  R. Dux,et al.  Argon doped pellets for fast and efficient radiative power removal in ASDEX Upgrade , 2022, Nuclear Fusion.

[2]  O. Février,et al.  Systematic extraction of a control-oriented model from perturbative experiments and SOLPS-ITER for emission front control in TCV , 2022, Nuclear Fusion.

[3]  W. Treutterer,et al.  Actuator Development Step by Step: Pellet Particle Flux Control for Single- and Multiple-Source Systems , 2021, Fusion Science and Technology.

[4]  M R de Baar,et al.  Model-based electron density profile estimation and control, applied to ITER , 2021, Journal of Physics Communications.

[5]  Y. Igitkhanov,et al.  Matter Injection in EU-DEMO: The Preconceptual Design , 2021, Fusion Science and Technology.

[6]  W. Suttrop,et al.  Targeting a Versatile Actuator for EU-DEMO: Novel Control Scheme for Multisource Pellet Injector , 2021 .

[7]  Jet Contributors,et al.  Statistical assessment of ELM triggering by pellets on JET , 2021 .

[8]  J. Schoukens,et al.  Real-time feedback control of the impurity emission front in tokamak divertor plasmas , 2021, Nature Communications.

[9]  R. Dux,et al.  Developments towards an ELM-free pedestal radiative cooling scenario using noble gas seeding in ASDEX Upgrade , 2020, Nuclear Fusion.

[10]  G Vandersteen,et al.  Correcting for non-periodic behaviour in perturbative experiments: application to heat pulse propagation and modulated gas-puff experiments , 2020, Plasma Physics and Controlled Fusion.

[11]  E. Fable,et al.  Optimizing the EU-DEMO pellet fuelling scheme , 2020, Fusion Engineering and Design.

[12]  H. Zohm,et al.  H-mode confinement in the pellet-enforced high-density regime of the all-metal-wall tokamak ASDEX Upgrade , 2020, Nuclear Fusion.

[13]  Wpmh Maurice Heemels,et al.  Model-based real-time plasma electron density profile estimation and control on ASDEX Upgrade and TCV , 2019, Fusion Engineering and Design.

[14]  B. Pégourié,et al.  A Flexible Pellet Injection System for the Tokamak JT-60SA: The Final Conceptual Design , 2018, Fusion Science and Technology.

[15]  O. Sauter,et al.  Path-oriented early reaction to approaching disruptions in ASDEX Upgrade and TCV in view of the future needs for ITER and DEMO , 2017 .

[16]  M. Beurskens,et al.  The role of the density profile in the ASDEX-Upgrade pedestal structure , 2016 .

[17]  Ronald Wenninger,et al.  Considerations on the DEMO pellet fuelling system , 2015 .

[18]  W. Treutterer,et al.  The enhanced high speed inboard pellet fuelling system at ASDEX Upgrade , 2013 .

[19]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[20]  Jet Efda Contributors,et al.  Comparison of different pellet injection systems for ELM pacing , 2011 .

[21]  P. Lang,et al.  Volume measurement of cryogenic deuterium pellets by Bayesian analysis of single shadowgraphy images. , 2008, The Review of scientific instruments.

[22]  L. Horton,et al.  ELM pace making and mitigation by pellet injection in ASDEX Upgrade , 2004 .

[23]  C. Andelfinger,et al.  A new centrifuge pellet injector for fusion experiments , 1993 .