Thorium(IV) and Uranium(IV) Complexes with Cucurbit[5]uril.

Tetravalent thorium and uranium complexes with cucurbit[5]uril (Q[5]) were investigated with eight new complexes being synthesized and structurally characterized. [Th(Q[5])(OH)(H2O)2]6·18NO3· nH2O (1) has a hexagonal nanowheel structure with each of the six Th4+ ions being cap-coordinated by a Q[5] and monodentate-coordinated to the nearby Q[5]. [Th(Q[5])(HCOO)(H2O)4][Th(NO3)5(H2O)2]2[Th(NO3)3(HCOO)(H2O)2]0.5·NO3· nH2O (2) has a heteroleptic mononuclear structure with a Th4+ ion cap-coordinated on one side of the Q[5] portal and monodentate-coordinated to a formate anion inside the Q[5] cavity. [KTh1.5(Q[5])Cl(NO3)3][Th(NO3)5(H2O)2]·2NO3·2.5H2O (3) has a heterometallic structure with both Th4+ and K+ ions each occupying one side of the two Q[5] portals forming a capsule. [CsTh(Q[5])Cl(NO3)2(H2O)3]·2NO3· nH2O (4) has a heterometallic 1D polymeric structure with both Th4+ and Cs+ ions each occupying one side of the two Q[5] portals, forming monomers which are linked together by sharing two water molecules and one carbonyl oxygen atom between Th4+ and Cs+ ions. [Th(Q[5])Cl(H2O)][CdCl3][CdCl4]·0.5HCl·4H2O (5), [Th(Q[5])Cl(H2O)][Ru2OCl9(H2O)]·0.5HCl·9.5H2O (6), [Th(Q[5])Cl(H2O)][IrCl6]1.5·3H2O (7), and [U(Q[5])Cl(H2O)][ZnCl3(H2O)][(ZnCl4)]·8H2O (8) have similar 1D polymeric structures with Th4+/U4+ ions cap-coordinated on one side of a Q[5] and bidentate coordinated to the nearby Q[5]. The transition metal chlorides act as anions for charge compensation as well as structure inducers via cation-anion interactions forming various anion patterns around the 1D polymers. Actinide contraction has been observed in the early actinide series.

[1]  Yingjie Zhang,et al.  Crystal structure analysis of twisted cucurbit [14]uril conformations , 2017 .

[2]  G. Wei,et al.  Multiple Efficient Fluorescence Emission from Cucurbit[10]uril-[Cd4Cl16]8--Based Pillared Diamond Porous Supramolecular Frameworks. , 2017, ACS applied materials & interfaces.

[3]  Yingjie Zhang,et al.  Cucurbit[10]uril-Based Smart Supramolecular Organic Frameworks in Selective Isolation of Metal Cations , 2017 .

[4]  B. Cheng,et al.  Optical properties of selected 4d and 5d transition metal ion-doped glasses , 2017 .

[5]  L. Lindoy,et al.  Twisted Cucurbit[n]urils. , 2016, Organic letters.

[6]  T. Bredow,et al.  The Electronic States of U(4+) in U(PO4)Cl: An Example for Angular Overlap Modeling of 5f(n) Systems. , 2016, Inorganic chemistry.

[7]  Oren A Scherman,et al.  Cucurbituril-Based Molecular Recognition. , 2015, Chemical reviews.

[8]  P. Thuéry Second-Sphere Complexation of Thorium(IV) by Cucurbit[6]uril with Included Perrhenate Counterions – Crystal Structure and Hirshfeld Surface Analysis , 2015 .

[9]  L. Lindoy,et al.  Advances in the lanthanide metallosupramolecular chemistry of the cucurbit[n]urils , 2015 .

[10]  W. Nau,et al.  Cucurbiturils: from synthesis to high-affinity binding and catalysis. , 2015, Chemical Society reviews.

[11]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[12]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[13]  W. Evans,et al.  Magnetic susceptibility of uranium complexes. , 2014, Chemical reviews.

[14]  R. Cao,et al.  Monodispersed Ag nanoparticles as catalyst: preparation based on crystalline supramolecular hybrid of decamethylcucurbit[5]uril and silver ions. , 2014, Inorganic chemistry.

[15]  Wenbin Yao,et al.  Anion concentration control in the self-assembly of symmetrical α,α′,δ,δ′-tetramethyl-cucurbit[6]uril-based tubular architectures , 2014 .

[16]  Z. Tao,et al.  Self-assemblies based on the "outer-surface interactions" of cucurbit[n]urils: new opportunities for supramolecular architectures and materials. , 2014, Accounts of chemical research.

[17]  C. A. D. de Oliveira,et al.  New lanthanide-CB[6] coordination compounds: relationships between the crystal structure and luminescent properties. , 2014, Dalton transactions.

[18]  Yunqian Zhang,et al.  [PMo12O40]3–‐Induced Perhydroxycucurbit[5]uril‐Based Porous Supramolecular Assemblies , 2014 .

[19]  Yunqian Zhang,et al.  [CdCl4]2− anion-induced coordination of Ln3+ to cucurbit[8]uril and the formation of supramolecular self-assemblies: potential application in isolation of light lanthanides , 2014 .

[20]  Z. Tao,et al.  Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. , 2013, Chemical Society reviews.

[21]  R. Cao,et al.  Crystalline hybrid solid materials of palladium and decamethylcucurbit[5]uril as recoverable precatalysts for Heck cross-coupling reactions. , 2013, Chemistry.

[22]  Yunqian Zhang,et al.  The synthesis of networks based on the coordination of cucurbit[8]urils and alkali or alkaline earth ions in the presence of the polychloride transition-metal anions , 2013 .

[23]  M. Yamashita,et al.  Dy(III) single-ion magnet showing extreme sensitivity to (de)hydration. , 2013, Inorganic chemistry.

[24]  Yunqian Zhang,et al.  Twisted cucurbit[14]uril. , 2013, Angewandte Chemie.

[25]  J. Clegg,et al.  One-Dimensional Coordination Polymers of Lanthanide Cations to Cucurbit[7]uril Built Using a Range of Tetrachloride Transition-Metal Dianion Structure Inducers , 2013 .

[26]  Yunqian Zhang,et al.  Coordination nanotubes self-assembled from cucurbit[7]uril and lanthanide cations , 2013 .

[27]  Yunqian Zhang,et al.  Supramolecular assemblies based on the interaction of a copper dication with alky-substituted cucurbit[6]urils , 2013 .

[28]  J. Platts,et al.  Emission spectroscopy of uranium(IV) compounds: a combined synthetic, spectroscopic and computational study , 2013 .

[29]  Yunqian Zhang,et al.  Tetrachloride transition-metal dianion-induced coordination and supramolecular self-assembly of strontium dications to cucurbit[8]uril , 2013 .

[30]  Yunqian Zhang,et al.  Construction of cucurbit[7]uril based tubular nanochannels incorporating associated [CdCl4]2- and lanthanide ions. , 2013, Inorganic chemistry.

[31]  Yuan Chen,et al.  Structural interrogation of a cucurbit[7]uril-ferrocene host–guest complex in the solid state: a Raman spectroscopy study , 2013 .

[32]  L. Lindoy,et al.  Hydroquinone-assisted assembly of coordination polymers from lanthanides and cucurbit[5]uril , 2012 .

[33]  Z. Tao,et al.  Coordination complexes based on pentacyclohexanocucurbit[5]uril and lanthanide(III) ions: lanthanide contraction effect induced structural variation , 2012 .

[34]  A. Monkman,et al.  Dinuclear iridium(III) complexes of cyclometalated fluorenylpyridine ligands as phosphorescent dopants for efficient solution-processed OLEDs , 2012 .

[35]  C. Domingo,et al.  Cucurbit[8]uril-stabilized charge transfer complexes with diquat driven by pH: a SERS study. , 2012, Physical chemistry chemical physics : PCCP.

[36]  P. Thuéry Lanthanide Ion Complexes with 2-, 3-, or 4-Sulfobenzoate and Cucurbit[6]uril , 2012 .

[37]  P. Thuéry Uranyl Ion Complexes with Ammoniobenzoates as Assemblers for Cucurbit[6]uril Molecules , 2012 .

[38]  Srinivasa Rao,et al.  Fluorescent uranyl ion lidded cucurbit[5]uril capsule. , 2012, Inorganic chemistry.

[39]  Yunqian Zhang,et al.  Three cucurbit[5]uril-based heterometallic complexes , 2011 .

[40]  Marc D. Walter,et al.  Thorium oxo and sulfido metallocenes: synthesis, structure, reactivity, and computational studies. , 2011, Journal of the American Chemical Society.

[41]  Yunqian Zhang,et al.  Novel supramolecular assemblies based on coordination of samarium cation to cucurbit[5]uril. , 2011, Inorganic chemistry.

[42]  P. Thuéry Uranyl–Alkali Metal Ion Heterometallic Complexes with Cucurbit[6]uril and a Sulfonated Catechol , 2011 .

[43]  Yunqian Zhang,et al.  Complexation of cyclohexanocucurbit[6]uril with cadmium ions: X-ray crystallographic and electrochemical study. , 2010, Inorganic chemistry.

[44]  P. Thuéry Second-sphere tethering of rare-earth ions to cucurbit[6]uril by iminodiacetic acid involving carboxylic group encapsulation. , 2010, Inorganic chemistry.

[45]  J. Baumberg,et al.  Raman and SERS spectroscopy of cucurbit[n]urils. , 2010, Physical chemistry chemical physics : PCCP.

[46]  S. P. Gejji,et al.  Density functional investigations on the charge distribution, vibrational spectra, and NMR chemical shifts in cucurbit[n]uril (n = 5-12) hosts. , 2010, Journal of Physical Chemistry A.

[47]  O. Scherman,et al.  Formation of dynamic aggregates in water by cucurbit[5]uril capped with gold nanoparticles. , 2010, Chemical communications.

[48]  P. Thuéry,et al.  Uranyl Ion Complexation by Cucurbiturils in the Presence of Perrhenic, Phosphoric, or Polycarboxylic Acids. Novel Mixed-Ligand Uranyl−Organic Frameworks , 2010 .

[49]  Wolfgang Kabsch,et al.  Integration, scaling, space-group assignment and post-refinement , 2010, Acta crystallographica. Section D, Biological crystallography.

[50]  Yunqian Zhang,et al.  Molecular capsules formed by three different cucurbit[5]urils and some lanthanide ions , 2009 .

[51]  P. Thuéry Uranyl ion complexes of cucurbit[7]uril with zero-, one- and two-dimensionality , 2009 .

[52]  P. Thuéry Lanthanide complexes with cucurbit[n]urils (n = 5, 6, 7) and perrhenate ligands: new examples of encapsulation of perrhenate anions. , 2009, Inorganic chemistry.

[53]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[54]  PierreThuéry Uranyl Ion Complexes with Cucurbit[5]uril: from Molecular Capsules to Uranyl-Organic Frameworks , 2009 .

[55]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[56]  P. Thuéry Uranyl-lanthanide heterometallic complexes with cucurbit[6]uril and perrhenate ligands. , 2009, Inorganic chemistry.

[57]  Z. Yun Crystal Structure of the Decamethylcucurbit[5]uril Complexes with Some Metal Ions , 2009 .

[58]  P. Thuéry Uranyl Ion Complexes with Cucurbit[n]urils (n = 6, 7, and 8): A New Family of Uranyl-Organic Frameworks , 2008 .

[59]  L. Long,et al.  Interesting anion-inclusion behavior of cucurbit[5]uril and its lanthanide-capped molecular capsule. , 2007, Inorganic chemistry.

[60]  Yunqian Zhang,et al.  Chlorine anion encapsulation by molecular capsules based on cucurbit[5]uril and decamethylcucurbit[5]uril. , 2007, Molecules.

[61]  L. Long,et al.  Molecular capsules based on cucurbit[5]uril encapsulating "naked" anion chlorine , 2006 .

[62]  Yi-zhi Li,et al.  Iodine-assisted assembly of helical coordination polymers of cucurbituril and asymmetric copper(II) complexes. , 2005, Angewandte Chemie.

[63]  S. Gambarotta,et al.  Cyclometalation and solvent deoxygenation during reduction of a homoleptic Th(OAr)4 complex: Serendipitous formation of a terminally bonded Th-OH function , 2004 .

[64]  D. Samsonenko,et al.  Syntheses and crystal structures of SmIII and ThIV complexes with macrocyclic cavitand cucurbituril , 2003 .

[65]  Peter Kuhn,et al.  Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. , 2002, Journal of synchrotron radiation.

[66]  I. Dance,et al.  A cucurbituril-based gyroscane: a new supramolecular form. , 2002, Angewandte Chemie.

[67]  H. Holdt,et al.  Cucurbit[5]uril, Decamethylcucurbit[5]uril and Cucurbit[6]uril. Synthesis, Solubility and Amine Complex Formation , 2001 .

[68]  Eunsung Lee,et al.  New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8) , 2000 .

[69]  R. Behrend,et al.  I. Ueber Condensationsproducte aus Glycoluril und Formaldehyd , 1905 .