Padé schemes with Richardson extrapolation for the sine-Gordon equation

Abstract Four novel implicit finite difference methods with ( q + s ) -th order in space based on (q, s)-Pade approximations have been analyzed and developed for the sine-Gordon equation. Specifically, (4,0)-, (2,2)-, (4,2)-, and (4,4)-Pade methods. All of them share the treatment for the nonlinearity and integration in time, specifically, the one that results in an energy-conserving (2,0)-Pade scheme. The five methods have been developed with and without Richardson extrapolation in time. All the methods are linearly, unconditionally stable. A comparison among them for both the kink–antikink and breather solutions in terms of global error, computational cost and energy conservation is presented. Our results indicate that the (4,0)- and (4,4)-Pade methods without Richardson extrapolation are the most cost-effective ones for small and large global error, respectively; and the (4,4)-Pade methods in all the cases when Richardson extrapolation is used.

[1]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[2]  L. Vázquez,et al.  Numerical solution of the sine-Gordon equation , 1986 .

[3]  A. Scott,et al.  The soliton: A new concept in applied science , 1973 .

[4]  Robert Buckingham Peter D. Miller,et al.  Exact solutions of semiclassical non-characteristic Cauchy problems for the sine-Gordon equation , 2007, 0705.3159.

[5]  Francisco R. Villatoro,et al.  Padé numerical schemes for the sine-Gordon equation , 2019, Appl. Math. Comput..

[6]  Ameneh Taleei,et al.  A pseudo‐spectral method that uses an overlapping multidomain technique for the numerical solution of sine‐Gordon equation in one and two spatial dimensions , 2014 .

[7]  F. Esposito,et al.  Theory and applications of the sine-gordon equation , 1971 .

[8]  G. Lamb Elements of soliton theory , 1980 .

[9]  D. B. Duncan,et al.  Sympletic Finite Difference Approximations of the Nonlinear Klein--Gordon Equation , 1997 .

[10]  Jorge Eduardo Macías-Díaz,et al.  Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-Gordon equations , 2017, Commun. Nonlinear Sci. Numer. Simul..

[11]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[12]  Mehdi Dehghan,et al.  Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM) , 2010, Comput. Phys. Commun..

[13]  W. K. Zahra,et al.  Exponentially fitted methods for solving two-dimensional time fractional damped Klein-Gordon equation with nonlinear source term , 2019, Commun. Nonlinear Sci. Numer. Simul..

[14]  J. Perring,et al.  A Model unified field equation , 1962 .

[15]  A. G. Bratsos The solution of the two-dimensional sine-Gordon equation using the method of lines , 2007 .

[16]  Guo-Wei Wei,et al.  Discrete singular convolution for the sine-Gordon equation , 2000 .

[17]  Mehdi Dehghan,et al.  A multigrid compact finite difference method for solving the one‐dimensional nonlinear sine‐Gordon equation , 2015 .

[18]  W. G. Price,et al.  Numerical solutions of a damped Sine-Gordon equation in two space variables , 1995 .

[19]  Yuesheng Luo,et al.  Fourth‐order compact and energy conservative scheme for solving nonlinear Klein‐Gordon equation , 2017 .

[20]  A. S. Vasudeva Murthy,et al.  Higher order scheme for two-dimensional inhomogeneous sine-Gordon equation with impulsive forcing , 2018, Commun. Nonlinear Sci. Numer. Simul..

[21]  Athanassios G. Bratsos,et al.  The solution of the sine-gordon equation using the method of lines , 1996, Int. J. Comput. Math..

[22]  Bengt Fornberg,et al.  Stability and accuracy of time-extrapolated ADI-FDTD methods for solving wave equations , 2007 .

[23]  Mark J. Ablowitz,et al.  On the Numerical Solution of the Sine-Gordon Equation , 1996 .

[24]  P. Kevrekidis,et al.  The sine-Gordon Model and its Applications , 2014 .

[25]  Clarence O. E. Burg,et al.  Application of Richardson extrapolation to the numerical solution of partial differential equations , 2009 .

[26]  Mark J. Ablowitz,et al.  Method for Solving the Sine-Gordon Equation , 1973 .

[27]  Mehdi Dehghan,et al.  Meshless local Petrov-Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation , 2010, J. Comput. Appl. Math..

[28]  Gurhan Gurarslan,et al.  A sixth‐order compact finite difference method for the one‐dimensional sine‐Gordon equation , 2011 .

[29]  Bengt Fornberg,et al.  Some unconditionally stable time stepping methods for the 3D Maxwell's equations , 2004 .

[30]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[31]  W. Strauss,et al.  Numerical solution of a nonlinear Klein-Gordon equation , 1978 .

[32]  Athanassios G. Bratsos,et al.  A third order numerical scheme for the two-dimensional sine-Gordon equation , 2007, Math. Comput. Simul..

[33]  Yifan Wang,et al.  A fourth-order AVF method for the numerical integration of sine-Gordon equation , 2017, Appl. Math. Comput..

[34]  Mehdi Dehghan,et al.  High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods , 2010, Math. Comput. Model..

[35]  Pascual,et al.  Sine-Gordon solitons under weak stochastic perturbations. , 1985, Physical review. B, Condensed matter.

[36]  Chengjian Zhang,et al.  A new fourth-order numerical algorithm for a class of nonlinear wave equations , 2012 .

[37]  F. R. Villatoro,et al.  Solitary Waves on Graphene Superlattices , 2018 .

[38]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[39]  S. Richards Completed Richardson extrapolation in space and time , 1997 .

[40]  Elena Celledoni,et al.  Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method , 2012, J. Comput. Phys..

[41]  A. G. Bratsos A numerical method for the one‐dimensional sine‐Gordon equation , 2008 .