On the Representation of Gliders in Rule 54 by De Bruijn and Cycle Diagrams
暂无分享,去创建一个
[1] Stephen Wolfram. One-dimensional Cellular Automata , .
[2] James P. Crutchfield,et al. Computational mechanics of cellular automata: an example , 1997 .
[3] T. Czárán. The global dynamics of cellular automata: by Andrew Wuensche and Mike Lesser, Addison-Wesley, 1992. £39.69 hbk (xvii + 250 pages) ISBN 0 201 55740 1 , 1993 .
[4] N. Boccara,et al. Particlelike structures and their interactions in spatiotemporal patterns generated by one-dimensional deterministic cellular-automaton rules. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[5] Solomon W. Golomb,et al. Shift Register Sequences , 1981 .
[6] A. Wuensche. Classifying cellular automata automatically: finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter , 1999 .
[7] B. Voorhees. Computational Analysis of One-Dimensional Cellular Automata , 1995 .
[8] Juan Carlos Seck Tuoh Mora,et al. Determining a regular language by glider-based structures called phases fi_1 in Rule 110 , 2007, 0706.3348.
[9] Andrew Adamatzky,et al. Phenomenology of glider collisions in cellular automaton Rule 54 and associated logical gates , 2006 .
[10] Juan Carlos Seck Tuoh Mora,et al. Rule 110 Objects and Other Collision-Based Constructions , 2007, J. Cell. Autom..
[11] Burton Voorhees. Remarks on Applications of De Bruijn Diagrams and Their Fragments , 2008, J. Cell. Autom..
[12] A. Wuensche. Classifying Cellular Automata Automatically , 1998 .
[13] Stephen Wolfram,et al. A New Kind of Science , 2003, Artificial Life.
[14] Andrew Adamatzky. Collision-Based Computing , 2002, Springer London.