Incremental Clustering for Semi-Supervised Anomaly Detection applied on Log Data
暂无分享,去创建一个
Wolfgang Kastner | Florian Skopik | Markus Wurzenberger | Max Landauer | Roman Fiedler | Philipp Greitbauer | Florian Skopik | W. Kastner | Max Landauer | Markus Wurzenberger | Roman Fiedler | Philipp Greitbauer
[1] Mihai Pop,et al. DNACLUST: accurate and efficient clustering of phylogenetic marker genes , 2011, BMC Bioinformatics.
[2] Jonathon Shlens,et al. A Tutorial on Principal Component Analysis , 2014, ArXiv.
[3] Karen A. Scarfone,et al. Guide to Intrusion Detection and Prevention Systems (IDPS) , 2007 .
[4] Risto Vaarandi,et al. A data clustering algorithm for mining patterns from event logs , 2003, Proceedings of the 3rd IEEE Workshop on IP Operations & Management (IPOM 2003) (IEEE Cat. No.03EX764).
[5] Seiichi Uchida,et al. A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data , 2016, PloS one.
[6] Florian Skopik,et al. Semi-synthetic data set generation for security software evaluation , 2014, 2014 Twelfth Annual International Conference on Privacy, Security and Trust.
[7] Matthew A. Jaro,et al. Advances in Record-Linkage Methodology as Applied to Matching the 1985 Census of Tampa, Florida , 1989 .
[8] VARUN CHANDOLA,et al. Anomaly detection: A survey , 2009, CSUR.
[9] Jonathan Goldstein,et al. When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.
[10] Wael Hassan Gomaa,et al. A Survey of Text Similarity Approaches , 2013 .
[11] Pavel Berkhin,et al. A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.