Removing divergences in the negative moments of the multi-fractal partition function with the wavelet transformation
暂无分享,去创建一个
We present a promising technique which is capable of accessing the divergence free component of the partition function for the negative moments of the multi-fractal analysis of data using the wavelet transformation. It is based on implicitly bounding the local logarithmic slope of the wavelet maxima lines between the values of the Holder exponent of the singularities which are accessible for the wavelet used. The method delivers correct and stable results, illustrated using a test example of the Besicovich measure analysed with the Mexican hat wavelet. The performance of the method is then shown as applied to real-life data.
[1] Emmanuel Bacry,et al. THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS , 1995 .
[2] E. Bacry,et al. The Multifractal Formalism Revisited with Wavelets , 1994 .
[3] E. Bacry,et al. Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[4] Stéphane Mallat,et al. Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.