Identification of candidate genes for prostate cancer-risk SNPs utilizing a normal prostate tissue eQTL data set

[1]  Saurabh Baheti,et al.  Comprehensively evaluating cis-regulatory variation in the human prostate transcriptome by using gene-level allele-specific expression. , 2015, American journal of human genetics.

[2]  Dmitri D. Pervouchine,et al.  The human transcriptome across tissues and individuals , 2015, Science.

[3]  Gregory A. Poland,et al.  Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics , 2015, Genetics.

[4]  L. Kruglyak,et al.  The role of regulatory variation in complex traits and disease , 2015, Nature Reviews Genetics.

[5]  Y. Homma,et al.  CtBP2 modulates the androgen receptor to promote prostate cancer progression. , 2014, Cancer research.

[6]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[7]  B. Stranger,et al.  Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types. , 2014, Human molecular genetics.

[8]  Maria Gutierrez-Arcelus,et al.  Allelic mapping bias in RNA-sequencing is not a major confounder in eQTL studies , 2014, Genome Biology.

[9]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[10]  Krishna R. Kalari,et al.  MAP-RSeq: Mayo Analysis Pipeline for RNA sequencing , 2014, BMC Bioinformatics.

[11]  Peter A. Jones,et al.  Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer , 2014, Genome research.

[12]  Simon G. Coetzee,et al.  Comprehensive Functional Annotation of 77 Prostate Cancer Risk Loci , 2014, PLoS genetics.

[13]  Peggy Hall,et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..

[14]  M. Rubin,et al.  Variants at IRX4 as prostate cancer expression quantitative trait loci , 2013, European Journal of Human Genetics.

[15]  Pedro G. Ferreira,et al.  Transcriptome and genome sequencing uncovers functional variation in humans , 2013, Nature.

[16]  D. Koller,et al.  Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals , 2013, Genome research.

[17]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[18]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[19]  Wei Li,et al.  RSeQC: quality control of RNA-seq experiments , 2012, Bioinform..

[20]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[21]  W. Hahn,et al.  Genetic and functional analyses implicate the NUDT11, HNF1B, and SLC22A3 genes in prostate cancer pathogenesis , 2012, Proceedings of the National Academy of Sciences.

[22]  Fred A. Wright,et al.  seeQTL: a searchable database for human eQTLs , 2011, Bioinform..

[23]  S. Salzberg,et al.  TopHat-Fusion: an algorithm for discovery of novel fusion transcripts , 2011, Genome Biology.

[24]  Andrey A. Shabalin,et al.  Matrix eQTL: ultra fast eQTL analysis via large matrix operations , 2011, Bioinform..

[25]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[26]  Rongling Li,et al.  Quality Control Procedures for Genome‐Wide Association Studies , 2011, Current protocols in human genetics.

[27]  N. Cox,et al.  Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS , 2010, PLoS genetics.

[28]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[29]  Ali Amin Al Olama,et al.  Identification of seven new prostate cancer susceptibility loci through a genome-wide association study , 2009, Nature Genetics.

[30]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[31]  B. Browning,et al.  A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. , 2009, American journal of human genetics.

[32]  John S. Witte,et al.  Prostate cancer genomics: towards a new understanding , 2009, Nature Reviews Genetics.

[33]  R. Eeles,et al.  Genome-wide association studies in cancer. , 2008, Human molecular genetics.

[34]  Elaine A. Ostrander,et al.  Multiple Novel Prostate Cancer Predisposition Loci Confirmed by an International Study: The PRACTICAL Consortium , 2008, Cancer Epidemiology Biomarkers & Prevention.

[35]  W. Willett,et al.  Multiple loci identified in a genome-wide association study of prostate cancer , 2008, Nature Genetics.

[36]  Kevin M. Bradley,et al.  Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer , 2008, Nature Genetics.

[37]  J. Carpten,et al.  Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. , 2007, Journal of the National Cancer Institute.

[38]  L. Liang,et al.  A genome-wide association study of global gene expression , 2007, Nature Genetics.

[39]  D. Koller,et al.  Population genomics of human gene expression , 2007, Nature Genetics.

[40]  D. Gudbjartsson,et al.  Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes , 2007, Nature Genetics.

[41]  D. Gudbjartsson,et al.  Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24 , 2007, Nature Genetics.

[42]  P. Fearnhead,et al.  Genome-wide association study of prostate cancer identifies a second risk locus at 8q24 , 2007, Nature Genetics.

[43]  Joshua T. Burdick,et al.  Common genetic variants account for differences in gene expression among ethnic groups , 2007, Nature Genetics.

[44]  D. Reich,et al.  Population Structure and Eigenanalysis , 2006, PLoS genetics.

[45]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[46]  Daniel J Schaid,et al.  The complex genetic epidemiology of prostate cancer. , 2004, Human molecular genetics.

[47]  A. Jemal,et al.  Cancer statistics, 2015 , 2015, CA: a cancer journal for clinicians.

[48]  O. Delaneau,et al.  Supplementary Information for ‘ Improved whole chromosome phasing for disease and population genetic studies ’ , 2012 .

[49]  Tanya M. Teslovich,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[50]  Beatrice S Knudsen,et al.  Mechanisms of prostate cancer initiation and progression. , 2010, Advances in cancer research.

[51]  S. Dudoit,et al.  STATISTICAL METHODS FOR IDENTIFYING DIFFERENTIALLY EXPRESSED GENES IN REPLICATED cDNA MICROARRAY EXPERIMENTS , 2002 .

[52]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[53]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.