The role of elevated autophagy on the synaptic plasticity impairment caused by CdSe/ZnS quantum dots.

[1]  Gil Gonçalves,et al.  Nano‐Graphene Oxide: A Potential Multifunctional Platform for Cancer Therapy , 2013, Advanced healthcare materials.

[2]  M Montalti,et al.  Luminescent silica nanoparticles for cancer diagnosis. , 2013, Current medicinal chemistry.

[3]  Ming-Hsien Tsai,et al.  Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress. , 2013, Chemical research in toxicology.

[4]  E. White,et al.  Arsenic Inhibits Autophagic Flux, Activating the Nrf2-Keap1 Pathway in a p62-Dependent Manner , 2013, Molecular and Cellular Biology.

[5]  M. Swihart,et al.  Nanotoxicity assessment of quantum dots: from cellular to primate studies. , 2013, Chemical Society reviews.

[6]  Hicham A. Chibli,et al.  InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. , 2013, Nanoscale.

[7]  Leaf Huang,et al.  Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy. , 2012, Therapeutic delivery.

[8]  Djordje Klisic,et al.  Graphene quantum dots as autophagy-inducing photodynamic agents. , 2012, Biomaterials.

[9]  G Vecchio,et al.  In vivo assessment of CdSe-ZnS quantum dots: coating dependent bioaccumulation and genotoxicity. , 2012, Nanoscale.

[10]  F. Jiang,et al.  Toxicity of CdTe quantum dots on yeast Saccharomyces cerevisiae. , 2012, Small.

[11]  Wei Zhou,et al.  Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. , 2012, Nature materials.

[12]  B. Singh,et al.  ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. , 2012, Biomaterials.

[13]  Mohammad Shehata,et al.  Neuronal Stimulation Induces Autophagy in Hippocampal Neurons That Is Involved in AMPA Receptor Degradation after Chemical Long-Term Depression , 2012, The Journal of Neuroscience.

[14]  E. Baehrecke,et al.  Regulation and function of autophagy during cell survival and cell death. , 2012, Cold Spring Harbor perspectives in biology.

[15]  Andrea Steinbrück,et al.  Comprehensive analysis of the effects of CdSe quantum dot size, surface charge, and functionalization on primary human lung cells. , 2012, ACS nano.

[16]  R. Burke,et al.  Regulation of Presynaptic Neurotransmission by Macroautophagy , 2012, Neuron.

[17]  D. Pang,et al.  Tapping the potential of quantum dots for personalized oncology: current status and future perspectives. , 2012, Nanomedicine.

[18]  C. Fan,et al.  The cytotoxicity of cadmium-based quantum dots. , 2012, Biomaterials.

[19]  Lucienne Juillerat-Jeanneret,et al.  Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. , 2012, The Biochemical journal.

[20]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[21]  Antonia Gutierrez,et al.  Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus , 2011, Acta Neuropathologica.

[22]  Xing-Jie Liang,et al.  Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. , 2011, ACS nano.

[23]  A. Cuervo,et al.  Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. , 2011, Cell metabolism.

[24]  Z. S. Lu,et al.  Quantum dot-based nanocomposites for biomedical applications. , 2011, Current medicinal chemistry.

[25]  Y. Zhang,et al.  A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt–TSC2-mTOR signaling , 2011, Cell Death and Disease.

[26]  Haitao Wang,et al.  MicroRNAs as participants in cytotoxicity of CdTe quantum dots in NIH/3T3 cells. , 2011, Biomaterials.

[27]  N. Mizushima,et al.  Methods in Mammalian Autophagy Research , 2010, Cell.

[28]  Na Man,et al.  Rare earth oxide nanocrystals induce autophagy in HeLa cells. , 2009, Small.

[29]  Yang Li,et al.  Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal , 2009, Autophagy.

[30]  B. Ganetzky,et al.  Autophagy promotes synapse development in Drosophila , 2009, The Journal of cell biology.

[31]  Fei Sun,et al.  The effect of quantum dots on synaptic transmission and plasticity in the hippocampal dentate gyrus area of anesthetized rats. , 2009, Biomaterials.

[32]  Scott E McNeil,et al.  Induction of autophagy in porcine kidney cells by quantum dots: a common cellular response to nanomaterials? , 2008, Toxicological sciences : an official journal of the Society of Toxicology.

[33]  Ming Wang,et al.  Mechanisms of unmodified CdSe quantum dot-induced elevation of cytoplasmic calcium levels in primary cultures of rat hippocampal neurons. , 2008, Biomaterials.

[34]  Ming Wang,et al.  Unmodified CdSe Quantum Dots Induce Elevation of Cytoplasmic Calcium Levels and Impairment of Functional Properties of Sodium Channels in Rat Primary Cultured Hippocampal Neurons , 2008, Environmental health perspectives.

[35]  N. Mizushima,et al.  Autophagy: process and function. , 2007, Genes & development.

[36]  Frank Emmrich,et al.  Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. , 2006, Nano letters.

[37]  W. Tan,et al.  Solubilization of Quantum Dots for Biological Applications , 2006 .

[38]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[39]  Masaaki Komatsu,et al.  Loss of autophagy in the central nervous system causes neurodegeneration in mice , 2006, Nature.

[40]  S. Grant,et al.  Phosphatidylinositol 3-Kinase Regulates the Induction of Long-Term Potentiation through Extracellular Signal-Related Kinase-Independent Mechanisms , 2003, The Journal of Neuroscience.

[41]  C. Bramham,et al.  Brain-Derived Neurotrophic Factor Triggers Transcription-Dependent, Late Phase Long-Term Potentiation In Vivo , 2002, The Journal of Neuroscience.

[42]  F. Bloom,et al.  Phosphatidylinositol 3-Kinase Is Required for the Expression But Not for the Induction or the Maintenance of Long-Term Potentiation in the Hippocampal CA1 Region , 2002, The Journal of Neuroscience.

[43]  T. Bliss,et al.  Brain-Derived Neurotrophic Factor Induces Long-Term Potentiation in Intact Adult Hippocampus: Requirement for ERK Activation Coupled to CREB and Upregulation of Arc Synthesis , 2002, The Journal of Neuroscience.

[44]  Keiko Sato,et al.  Increased synapsin I immunoreactivity during long-term potentiation in rat hippocampus , 2000, Brain Research.

[45]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[46]  T. Südhof,et al.  Long-term potentiation in mice lacking synapsins , 1995, Neuropharmacology.

[47]  Y. Isaka,et al.  Chloroquine in cancer therapy: a double-edged sword of autophagy. , 2013, Cancer research.

[48]  C. Fan,et al.  The cytotoxicity of cadmium based, aqueous phase - synthesized, quantum dots and its modulation by surface coating. , 2009, Biomaterials.

[49]  A. Seifalian,et al.  Biological applications of quantum dots. , 2007, Biomaterials.

[50]  Songjun Zeng,et al.  Applications of Quantum Dots to Biological Medicine , 2004 .