Structured Dialogue Discourse Parsing

Dialogue discourse parsing aims to uncover the internal structure of a multi-participant conversation by finding all the discourse links and corresponding relations. Previous work either treats this task as a series of independent multiple-choice problems, in which the link existence and relations are decoded separately, or the encoding is restricted to only local interaction, ignoring the holistic structural information. In contrast, we propose a principled method that improves upon previous work from two perspectives: encoding and decoding. From the encoding side, we perform structured encoding on the adjacency matrix followed by the matrix-tree learning algorithm, where all discourse links and relations in the dialogue are jointly optimized based on latent tree-level distribution. From the decoding side, we perform structured inference using the modified Chiu-Liu-Edmonds algorithm, which explicitly generates the labeled multi-root non-projective spanning tree that best captures the discourse structure. In addition, unlike in previous work, we do not rely on hand-crafted features; this improves the model’s robustness. Experiments show that our method achieves new state-of-the-art, surpassing the previous model by 2.3 on STAC and 1.5 on Molweni (F1 scores).

[1]  Zhengyuan Liu,et al.  Improving Multi-Party Dialogue Discourse Parsing via Domain Integration , 2021, CODI.

[2]  Min Zhang,et al.  A Structure Self-Aware Model for Discourse Parsing on Multi-Party Dialogues , 2021, IJCAI.

[3]  Diyi Yang,et al.  Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs , 2021, NAACL.

[4]  Hai Zhao,et al.  Dialogue Graph Modeling for Conversational Machine Reading , 2020, FINDINGS.

[5]  Xiaocheng Feng,et al.  Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization , 2020, IJCAI.

[6]  Tao Yu,et al.  Online Conversation Disentanglement with Pointer Networks , 2020, EMNLP.

[7]  Kenny Q. Zhu,et al.  Multi-turn Response Selection Using Dialogue Dependency Relations , 2020, EMNLP.

[8]  Daniel Tarlow,et al.  Gradient Estimation with Stochastic Softmax Tricks , 2020, NeurIPS.

[9]  Ting Liu,et al.  Molweni: A Challenge Multiparty Dialogues-based Machine Reading Comprehension Dataset with Discourse Structure , 2020, COLING.

[10]  Zhenhua Ling,et al.  DialBERT: A Hierarchical Pre-Trained Model for Conversation Disentanglement , 2020, arXiv.org.

[11]  Ramesh Nallapati,et al.  Who did They Respond to? Conversation Structure Modeling using Masked Hierarchical Transformer , 2019, AAAI.

[12]  Minlie Huang,et al.  A Deep Sequential Model for Discourse Parsing on Multi-Party Dialogues , 2018, AAAI.

[13]  Jatin Ganhotra,et al.  A Large-Scale Corpus for Conversation Disentanglement , 2018, ACL.

[14]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[15]  Timothy Dozat,et al.  Universal Dependency Parsing from Scratch , 2019, CoNLL.

[16]  Nan Yu,et al.  Transition-based Neural RST Parsing with Implicit Syntax Features , 2018, COLING.

[17]  Jing Li,et al.  SegBot: A Generic Neural Text Segmentation Model with Pointer Network , 2018, IJCAI.

[18]  Wei Wang,et al.  Learning to Disentangle Interleaved Conversational Threads with a Siamese Hierarchical Network and Similarity Ranking , 2018, NAACL.

[19]  Claire Cardie,et al.  SparseMAP: Differentiable Sparse Structured Inference , 2018, ICML.

[20]  Jihun Choi,et al.  Learning to Compose Task-Specific Tree Structures , 2017, AAAI.

[21]  Yang Liu,et al.  Learning Structured Text Representations , 2017, TACL.

[22]  Mirella Lapata,et al.  Learning Contextually Informed Representations for Linear-Time Discourse Parsing , 2017, EMNLP.

[23]  Shujian Huang,et al.  Improved Neural Machine Translation with a Syntax-Aware Encoder and Decoder , 2017, ACL.

[24]  Alexander M. Rush,et al.  Structured Attention Networks , 2017, ICLR.

[25]  Noah A. Smith,et al.  Neural Discourse Structure for Text Categorization , 2017, ACL.

[26]  Anders Søgaard,et al.  Cross-lingual RST Discourse Parsing , 2017, EACL.

[27]  Timothy Dozat,et al.  Deep Biaffine Attention for Neural Dependency Parsing , 2016, ICLR.

[28]  Qi Li,et al.  Discourse Parsing with Attention-based Hierarchical Neural Networks , 2016, EMNLP.

[29]  Nicholas Asher,et al.  Integer Linear Programming for Discourse Parsing , 2016, NAACL.

[30]  Nicholas Asher,et al.  Discourse Structure and Dialogue Acts in Multiparty Dialogue: the STAC Corpus , 2016, LREC.

[31]  Gholamreza Haffari,et al.  A Latent Variable Recurrent Neural Network for Discourse Relation Language Models , 2016, ArXiv.

[32]  Shafiq R. Joty,et al.  CODRA: A Novel Discriminative Framework for Rhetorical Analysis , 2015, CL.

[33]  Parminder Bhatia,et al.  Better Document-level Sentiment Analysis from RST Discourse Parsing , 2015, EMNLP.

[34]  Regina Barzilay,et al.  Machine Comprehension with Discourse Relations , 2015, ACL.

[35]  Liang Wang,et al.  Text-level Discourse Dependency Parsing , 2014, ACL.

[36]  Peter Jansen,et al.  Discourse Complements Lexical Semantics for Non-factoid Answer Reranking , 2014, ACL.

[37]  Danqi Chen,et al.  A Fast and Accurate Dependency Parser using Neural Networks , 2014, EMNLP.

[38]  Micha Elsner,et al.  Disentangling Chat with Local Coherence Models , 2011, ACL.

[39]  Martha Palmer,et al.  Getting the Most out of Transition-based Dependency Parsing , 2011, ACL.

[40]  Douglas W. Oard,et al.  Context-based Message Expansion for Disentanglement of Interleaved Text Conversations , 2009, NAACL.

[41]  David A. Smith,et al.  Dependency Parsing by Belief Propagation , 2008, EMNLP.

[42]  Micha Elsner,et al.  You Talking to Me? A Corpus and Algorithm for Conversation Disentanglement , 2008, ACL.

[43]  Livio Robaldo,et al.  The Penn Discourse TreeBank 2.0. , 2008, LREC.

[44]  Alex Lascarides,et al.  Segmented Discourse Representation Theory: Dynamic Semantics With Discourse Structure , 2008 .

[45]  Giorgio Satta,et al.  On the Complexity of Non-Projective Data-Driven Dependency Parsing , 2007, IWPT.

[46]  Xavier Carreras,et al.  Structured Prediction Models via the Matrix-Tree Theorem , 2007, EMNLP.

[47]  Barbara Di Eugenio,et al.  Automatic Discourse Segmentation using Neural Networks , 2007 .

[48]  Qiang Yang,et al.  Thread detection in dynamic text message streams , 2006, SIGIR.

[49]  Fernando Pereira,et al.  Non-Projective Dependency Parsing using Spanning Tree Algorithms , 2005, HLT.

[50]  Rashmi Prasad,et al.  The Penn Discourse Treebank , 2004, LREC.

[51]  Adwait Ratnaparkhi,et al.  A Simple Introduction to Maximum Entropy Models for Natural Language Processing , 1997 .

[52]  William C. Mann,et al.  Rhetorical Structure Theory: Toward a functional theory of text organization , 1988 .

[53]  Igor Mel’čuk,et al.  Dependency Syntax: Theory and Practice , 1987 .

[54]  J. Sheehan GRAPH THEORY (Encyclopedia of Mathematics and Its Applications, 21) , 1986 .

[55]  Sven Danø,et al.  Integer Linear Programming , 1974 .

[56]  R. Prim Shortest connection networks and some generalizations , 1957 .

[57]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .