Multi-Stage Optimization of LHTESS by utilization of Y-shaped Fin in a rectangular enclosure

[1]  Kamal Sharma,et al.  Investigation of thermal performance of a shell and tube latent heat thermal energy storage tank in the presence of different nano-enhanced PCMs , 2022, Case Studies in Thermal Engineering.

[2]  R. Oliveski,et al.  Melting and solidification in thermal storage: Influence of fin aspect ratio and positioning in a full charging and discharging cycle , 2022, Journal of Energy Storage.

[3]  Gongxing Yan,et al.  Using MHD free convection to receive the generated heat by an elliptical porous media , 2022, Case Studies in Thermal Engineering.

[4]  N. Bianco,et al.  Enhancing PCMs Thermal Conductivity: A Comparison Among Porous Metal Foams, Nanoparticles and Finned Surfaces in Triplex Tube Heat Exchangers , 2022, Applied Thermal Engineering.

[5]  F. Jarad,et al.  Profit and efficiency enhancement of a cylindrical solar collector by structural modification of helical tube , 2022, Case Studies in Thermal Engineering.

[6]  Z. A. Al-Absi,et al.  Experimental study on the thermal performance of PCM-based panels developed for exterior finishes of building walls , 2022, Journal of Building Engineering.

[7]  L. Varshney,et al.  An experimental and numerical study on phase change material melting rate enhancement for a horizontal semi-circular shell and tube thermal energy storage system , 2022, Journal of Energy Storage.

[8]  Xinmei Luo,et al.  Numerical study on enhanced melting heat transfer of PCM by the combined fractal fins , 2022, Journal of Energy Storage.

[9]  Zu-Guo Shen,et al.  Heat transfer performance of a finned shell-and-tube latent heat thermal energy storage unit in the presence of thermal radiation , 2022, Journal of Energy Storage.

[10]  S. Tiari,et al.  An experimental study on the effect of annular and radial fins on thermal performance of a latent heat thermal energy storage unit , 2021, Journal of Energy Storage.

[11]  Rafael da Silveira Borahela,et al.  Fin configurations to reduce lauric acid melting time in a rectangular thermal reservoir , 2021, Journal of Energy Storage.

[12]  F. Jarad,et al.  Compound usage of L shaped fin and Nano-particles for the acceleration of the solidification process inside a vertical enclosure (A comparison with ordinary double rectangular fin) , 2021, Case Studies in Thermal Engineering.

[13]  M. Irfan,et al.  Dominant roles of eccentricity, fin design, and nanoparticles in performance enhancement of latent thermal energy storage unit , 2021, Journal of Energy Storage.

[14]  J. Nathwani,et al.  Heat transfer enhancement in latent heat thermal energy storage unit using a combination of fins and rotational mechanisms , 2021 .

[15]  Qicheng Chen,et al.  Phase change material heat transfer enhancement in latent heat thermal energy storage unit with single fin: Comprehensive effect of position and length , 2021 .

[16]  Wen Ye,et al.  Heat transfer enhancement in latent heat thermal energy storage using copper foams with varying porosity , 2021 .

[17]  M. Irfan,et al.  Melting performance enhancement of a phase change material using branched fins and nanoparticles for energy storage applications , 2021 .

[18]  Lioua Kolsi,et al.  Heat transfer and fluid flow in a PCM-filled enclosure: Effect of inclination angle and mid-separation fin , 2021, International Communications in Heat and Mass Transfer.

[19]  Xiaochun Zhang,et al.  Three-dimensional numerical investigation on melting performance of phase change material composited with copper foam in local thermal non-equilibrium containing an internal heater , 2021, International Journal of Heat and Mass Transfer.

[20]  Zhenjun Ma,et al.  Numerical study on the performance of shell-and-tube thermal energy storage using multiple PCMs and gradient copper foam , 2021 .

[21]  S. Yao,et al.  Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy storage system , 2021, Energy.

[22]  R. Senthil,et al.  A review on container geometry and orientations of phase change materials for solar thermal systems , 2021 .

[23]  Mohammed N. Alghamdi,et al.  Combined effect of using porous media and nano-particle on melting performance of PCM filled enclosure with triangular double fins , 2021 .

[24]  L. Rocha,et al.  Design of fin structures for phase change material (PCM) melting process in rectangular cavities , 2021 .

[25]  Pramod Kumar,et al.  Effect of different concentration of functionalized graphene on charging time reduction in thermal energy storage system , 2020 .

[26]  Q. Bach,et al.  Solidification of PCM within a tank with longitudinal-Y shape fins and CuO nanoparticle , 2020 .

[27]  M. K. Rathod,et al.  Experimental and numerical assessments of thermal transport in fins and metal foam infused latent heat thermal energy storage systems: A comparative evaluation , 2020, Applied Thermal Engineering.

[28]  F. Askri,et al.  A comprehensive review of heat transfer intensification methods for latent heat storage units , 2020, Energy Storage.

[29]  Hameed B. Mahood,et al.  Numerical study and experimental validation of the effects of orientation and configuration on melting in a latent heat thermal storage unit , 2019, Journal of Energy Storage.

[30]  Shuli Liu,et al.  Numerical study on the performance of an air—Multiple PCMs unit for free cooling and ventilation , 2017 .

[31]  Mehrdad Boroushaki,et al.  Performance evaluation and optimization of encapsulated cascade PCM thermal storage , 2017 .

[32]  F. Bruno,et al.  Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure , 2014 .

[33]  Hossein Shokouhmand,et al.  Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit , 2013 .