Koiter's Thin Shells on Catmull-Clark Limit Surfaces
暂无分享,去创建一个
[1] Ulrich Reif,et al. Curvature integrability of subdivision surfaces , 2001, Adv. Comput. Math..
[2] Konrad Polthier,et al. QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.
[3] Christoph von Tycowicz,et al. Eigenmodes of Surface Energies for Shape Analysis , 2010, GMP.
[4] P. G. Ciarlet,et al. An Introduction to Differential Geometry with Applications to Elasticity , 2006 .
[5] Michael Ortiz,et al. Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.
[6] Olga Sorkine-Hornung,et al. On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.
[7] Bruno Lévy,et al. Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.
[8] Peter Schröder,et al. Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..
[9] P. Deuflhard,et al. Numerische Mathematik 3 , 2011 .
[10] A. Love. I. The small free vibrations and deformation of a thin elastic shell , 1888, Proceedings of the Royal Society of London.
[11] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[12] Weiyin Ma,et al. Subdivision surfaces for CAD - an overview , 2005, Comput. Aided Des..
[13] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[14] J. Clark,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[15] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[16] Markus H. Gross,et al. PriMo: coupled prisms for intuitive surface modeling , 2006, SGP '06.